Modal Analysis of Bus Body Structure using Finite Element Analysis Technique

Author(s):  
Vikas Radhakrishna Deulgaonkar ◽  
M.S. Kulkarni ◽  
S.S. Khedkar ◽  
S.U. Kharosekar ◽  
V.U. Sadavarte

Present work deals with evaluation of dynamic characteristics of a bus body structure. The bus under consideration is a sleeper non-air conditioned vehicle for a passenger capacity of thirty and it is designed adhering to automotive industry standards. Modal analysis of the proposed bus design is carried using Ansys Workbench. With the aid of modal analysis ten mode shapes of the bus are postulated, corresponding frequencies and deflections are estimated. Mesh generator is used to mesh the complex bus model. The deflection and frequency magnitudes of proposed bus model is found with the help of Finite Element Analysis (FEA) technique and they are in good agreement with experimental results available in literature. Engine being the prime source of excitation, it’s frequency is compared with the frequencies determined by FEA of the proposed bus body and it is observed that the frequencies of the bus body for ten different modes are far less than the minimum resonant engine frequency.

Author(s):  
Vikas Radhakrishna Deulgaonkar ◽  
M.S. Kulkarni ◽  
S.S. Khedkar ◽  
S.U. Kharosekar ◽  
V.U. Sadavarte

Crash analysis of non-air-conditioned sleeper bus has been carried in present work. Using relevant automotive industry standards (052 and 119) bus dimensions are considered for design. Surface modeling technique is used to prepare computer aided model. Further the bus design is freeze using finite element analysis for different crash conditions as front impact, side impact and rear impact. Crash analysis of the proposed bus design is carried using Ansys Workbench. Using the outcomes from finite element analysis as stresses, deflections, internal and kinetic energies during various crash conditions are estimated. Mesh generator is used to mesh the complex bus model. The stress and deflection magnitudes of proposed bus model are in good agreement with the experimental results available in literature. Design improvements are made using the finite element analysis outcomes, observing the deformation patterns additional pillar members of suitable length are added to increase the dynamic crush and further enhance occupant safety during collisions.


Author(s):  
Ulrich Gabbert ◽  
Manfred Zehn ◽  
Friedrich Wahl

Abstract The paper deals with improvements of accuracy of structural dynamic calculations by using both the advantages of Finite Element Analysis (FEA) and Experimental Modal Analysis (EMA). The basis for such improvements are reasonable mechanical and numerical models and accurate frequency response measurements (eigenfrequencies and mode shapes). The paper deals first with reasons for and estimations of errors in numerical and experimental analysis. It can be shown by theory and experiment that neither FEA nor EMA models are unique, due to inevitable incompleteness of the mode shapes and eigenfrequencies from a vibration test. Verification and updating of FE models by linking FEA with EMA are discussed in the paper and mainly focussed on FE models with a large number of degrees of freedom. Hence an update method has been introduced, which leads to an improved model in a relatively small quantity of computer time. It can be shown, that based on measured eigenfrequencies and calculated eigenvectors, an updating of FE-models for real engineering problems, by changing the mass matrix only, is a very efficient procedure with a surprisingly good quality updated model.


2011 ◽  
Vol 199-200 ◽  
pp. 1126-1129
Author(s):  
Su Fang Fu ◽  
Han Gao ◽  
Jia Xi Du ◽  
Qiu Ju Zhang ◽  
Xue Ming Zhang ◽  
...  

In this paper, the finite element model for the cabinet of a drum washing machine and the model for testing vibration of the cabinet were developed in ANSYS software and PULSE™, respectively. A series of tests were conducted. The natural frequencies and mode shapes were obtained by finite element analysis and modal experiment, which revealed weak parts of the cabinet. Meanwhile, the computational modes were in good agreement with experimental ones and this could provide an available method by which it was convenient to improve the design of the cabinet.


1993 ◽  
Vol 115 (1) ◽  
pp. 102-109 ◽  
Author(s):  
S. A. Majlessi ◽  
D. Lee

The process of square-cup drawing is modeled employing a simplified finite element analysis technique. In order to make the algorithm computationally efficient, the deformation (total strain) theory of plasticity is adopted. The solution scheme is comprised of specifying a mesh of two-dimensional finite elements with membrane properties over the deformed configuration of the final part geometry. The initial positions of these elements are then computed by minimization of the potential energy, and therefore the strain distributions are determined. In order to verify predictions made by the finite element analysis method, a drawing apparatus is built and various drawing experiments are carried out. A number of circular and square cups are drawn and strain distributions measured. It is observed that there is generally a good agreement between computed and measured results for both axisymmetric and nonaxisymmetric cases.


2014 ◽  
Vol 684 ◽  
pp. 330-334
Author(s):  
Heng Yi Yuan ◽  
Ming Wang He

The front axle is an important part of a car, directly affects the dynamic characteristics of car. Based on UG NX6.0 for automobile front axle parts 3D modeling, finite element analysis software ANSYS modal analysis was carried out on the front axle, and extract their first four order natural frequency and vibration mode shapes, the automobile front axle structure stress analysis and stress distribution nephogram of get parts. Analysis of the impact load condition and emergency braking conditions modal analysis, and further to fatigue analysis of the front axle bridge shell, for provide valuable reference data for the reasonable design of parts. For the kinetics of further research and improvement of front axle provides the theoretical basis, but also provides reference to the actual test.


2021 ◽  
Vol 2 (4) ◽  
pp. 681-693
Author(s):  
Zoltán Virág ◽  
Sándor Szirbik

This paper deals with the modal analysis of optimized trapezoidal stiffened plates with simple supported conditions on the four edges of the base plate. The main objective of the finite element analysis is to investigate the natural frequencies and mode shapes of some stiffened structures subjected to lateral pressure and uniaxial compression in order to identify any potentially dangerous frequencies and eliminate the failure possibilities. The natural frequencies and mode shapes are important parameters in the design of stiffened plates for dynamic loading conditions. In this study, the numerical analysis is performed for such a design of this kind of welded plates which have already been optimized for lateral pressure and uniaxial compression. The objective function of the optimization to be minimized performed with the Excel Solver program is the cost function which contains material and fabrication costs for Gas Metal Arc Welding (GMAW) welding technology. In this study, the eigenvalue extraction used to calculate the natural frequencies and mode shapes is based on the Lanczos iteration methods using the Abaqus software. The structure is made of two grades of steel, which are described with different yield stress while all other material properties of the steels in the isotropic elastic model remain the same. Drawing the conclusion from finite element analysis, this circumstance greatly affects the result.


Author(s):  
Faraz Ahmad ◽  
Pushpendra Kumar ◽  
P. Pravin Patil ◽  
Vijay Kumar

1981 ◽  
Vol 18 (01) ◽  
pp. 51-68
Author(s):  
Donald Liu ◽  
Abram Bakker

Local structural problems in ships are generally the result of stress concentrations in structural details. The intent of this paper is to show that costly repairs and lay-up time of a vessel can often be prevented, if these problem areas are recognized and investigated in the design stages. Such investigations can be performed for minimal labor and computer costs by using finite-element analysis techniques. Practical procedures for analyzing structural details are presented, including discussions of the results and the analysis costs expended. It is shown that the application of the finite-element analysis technique can be economically employed in the investigation of structural details.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
H. F. Wang ◽  
Z. F. Sang ◽  
L. P. Xue ◽  
G. E. O. Widera

The burst pressure of cylinders with hillside nozzle is determined using both experimental and finite element analysis (FEA) approaches. Three full-scale test models with different angles of the hillside nozzle were designed and fabricated specifically for a hydrostatic test in which the cylinders were pressurized with water. 3D static nonlinear finite element simulations of the experimental models were performed to obtain the burst pressures. The burst pressure is defined as the internal pressure for which the structure approaches dimensional instability, i.e., unbounded strain for a small increment in pressure. Good agreement between the predicted and measured burst pressures shows that elastic-plastic finite element analysis is a viable option to estimate the burst pressure of the cylinders with hillside nozzles. The preliminary results also suggest that the failure location is near the longitudinal plane of the cylinder-nozzle intersection and that the burst pressure increases slightly with an increment in the angle of the hillside nozzle.


Sign in / Sign up

Export Citation Format

Share Document