Combined Effects of Injection Timing and Fuel Injection Pressure on Performance, Combustion and Emission Characteristics of a Direct Injection Diesel Engine Numerically Using CONVERGE CFD Tool

Author(s):  
Tushar Narendra Puri lng ◽  
Lalitkumar Ramujagir Soni lng ◽  
Sourabh Deshpande
2021 ◽  
Author(s):  
Jatoth Ramachander ◽  
Santhosh Kumar Gugulothu ◽  
Gadepalli Ravikiran Sastry ◽  
Burra Bhsker

Abstract This paper deals with analysis of the influence of fuel injection pressure with ternary fuel (diesel + Mahua methyl ester + Pentanol) on the emission, combustion and performance characteristics of a four stroke, single cylinder, common rail direct injection diesel engine working at a constant speed and varying operating scenarios. The usage of ternary fuel raised the NOx emission (12.46%) value and specific fuel consumption (SFC) with a decrease in the BTE (brake thermal efficiency) which attributes to its properties and combustion characteristics. The combustion process was affected by the physical properties of the blended fuel such as volatility and viscosity and this eventually affected the performance of the engine. The fuel injection pressure is varied from 20 MPa to 50 MPa so that ternary fuel can be properly utilized. The high injection pressure of 50 MPa has better combustion characteristics and higher brake thermal efficiency (4.39%) value than other injection pressure values. A better mixture is formed due to well atomized spray and as a result, the levels of CO (22.24%), HC (9.49%) and smoke (7.5%) falls with the increase in injection pressure.


Author(s):  
M. Nandeesh ◽  
R. Harishkumar ◽  
C.R. Rajashekar ◽  
N.R. Banapurmath ◽  
V.S. Yaliwal

The conventional diesel fuels are depleting at a faster pace. To reduce the burden on the economy, the reserves and sources for future has to be limited. The use of biodiesel derivatives from various sources and its blends in diesel engine has gained more importance in recent years. The present work investigates the feasibility of using dairy scum methyl esters (DSOME) of B20 blend in a modified single cylinder of common rail direct injection (CRDI) engine at a constant speed. Experiments were carried out at different injection timings from 25deg BTDC to 5deg ATDC with constant injection pressure as 600 bar. The fuel injection timing plays an important role in evaluating the performance, emission and combustion characteristics of the engine. The results show that the performance is improved with retarded injection timings compared to the operation of single cylinder DI engine fuelled with DSOME B20 biodiesel.


The purpose of this study is to investigate the effect of fuelinjection pressure onhomogeneous charge formation and performanceand emission characteristics of Homogeneous charge compression ignition engine. The fuel injection pressure isone of the primary parameter for improvingthe homogeneity of the mixture and governing the power output and emission characteristics of HCCI engine. In this investigation, diesel fuelwasinjected at different injection pressuresas 2bar, 3bar, 4bar and 5bar respectively throughbyport fuel injector. The experimental investigationsshow that increasing the fuel injection pressure will promote the fuel to penetrate with air and creates well pre mixedair/fuel charge.The result shows, the specific fuel consumption (SFC) of HCCI engine isslightlyhigherthan the SFC of conventional diesel engine.The HCCI engine with 3bar injection pressure operated engine has lower SFC values compared to other injection pressure operated HCCI engine.The brake thermal efficiency of HCCI engine, operated with 3barinjection pressure has maximum BTE values over the other injection pressure operated engine.From theresult, it is observed that HCCI engine has lower smoke density values compared to conventional diesel engine andfurther reducedby increasing the fuel injection pressure. The 3bar injection pressure operated HCCI engine has emitted lower smoke densitycompared to other injection pressure operated HCCI engine. The 3bar injection pressureoperated HCCIengine hasemittedmaximum oxides of nitrogen (NOx) emissions than the other injection pressure operated HCCI engine. Other exhaust emissions of carbon monoxide (CO) and hydrocarbon (HC)emissions are increased when compared toconvention diesel engine


Author(s):  
Sukhbir Singh Khaira ◽  
Amandeep Singh ◽  
Marcis Jansons

Acoustic noise emitted by a diesel engine generally exceeds that produced by its spark-ignited equivalent and may hinder the acceptance of this more efficient engine type in the passenger car market (1). This work characterizes the combustion noise from a single-cylinder direct-injection diesel engine and examines the degree to which it may be minimized by optimal choice of injection parameters. The relative contribution of motoring, combustion and resonance components to overall engine noise are determined by decomposition of in-cylinder pressure traces over a range of load, injection pressure and start of injection. The frequency spectra of microphone signals recorded external to the engine are correlated with those of in-cylinder pressure traces. Short Time Fourier Transformation (STFT) is applied to cylinder pressure traces to reveal the occurrence of motoring, combustion noise and resonance in the frequency domain over the course of the engine cycle. Loudness is found to increase with enhanced resonance, in proportion to the rate of cylinder pressure rise and under conditions of high injection pressure, load and advanced injection timing.


Sign in / Sign up

Export Citation Format

Share Document