Effect of Injection Parameters and Strategy on the Noise From a Single Cylinder Direct Injection Diesel Engine

Author(s):  
Sukhbir Singh Khaira ◽  
Amandeep Singh ◽  
Marcis Jansons

Acoustic noise emitted by a diesel engine generally exceeds that produced by its spark-ignited equivalent and may hinder the acceptance of this more efficient engine type in the passenger car market (1). This work characterizes the combustion noise from a single-cylinder direct-injection diesel engine and examines the degree to which it may be minimized by optimal choice of injection parameters. The relative contribution of motoring, combustion and resonance components to overall engine noise are determined by decomposition of in-cylinder pressure traces over a range of load, injection pressure and start of injection. The frequency spectra of microphone signals recorded external to the engine are correlated with those of in-cylinder pressure traces. Short Time Fourier Transformation (STFT) is applied to cylinder pressure traces to reveal the occurrence of motoring, combustion noise and resonance in the frequency domain over the course of the engine cycle. Loudness is found to increase with enhanced resonance, in proportion to the rate of cylinder pressure rise and under conditions of high injection pressure, load and advanced injection timing.

Author(s):  
Menghan Li ◽  
Qiang Zhang ◽  
Guoxiang Li

In this paper, the effects of the injection timing, the injection pressure and the engine load on the combustion noise of a pilot-ignited direct-injection natural-gas engine were explored by analysing the separate components of the in-cylinder pressure. The results suggested that retarding the injection timing and reducing the injection pressure are effective ways of controlling the combustion noise. This can be attributed to the promoted burning rate at advanced injection timings and to the increased injection pressure. However, the effect of the engine load seems to be less obvious, although the resonance pressure level appears to increase with increasing engine load; the estimated combustion noise shows a decreasing tendency.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3280 ◽  
Author(s):  
Jinhong Shi ◽  
Tie Wang ◽  
Zhen Zhao ◽  
Tiantian Yang ◽  
Zhengwu Zhang

Experimental research was conducted on a turbo-charged, inter-cooling and common-rail diesel engine with Fischer–Tropsch fuel synthesized from Coal-to-liquid (CTL), in order to investigate the influence of different injection parameters on the combustion, emissions and efficiency characteristics of the engine. The results showed that the ignition point was advanced, the in-cylinder pressure and heat release rate increased as the injection timing advanced and the injection pressure increased. By comparing the peak in-cylinder pressure of 100 cycles for one sample, it was found that the coefficient variation (COV) remained under 2% throughout the tests and the combustion process remained stable. NOx emissions decreased with delayed injection timing and lower injection pressure. In contrast to NOXNOx emissions, soot emissions were almost zero when the injection pressure was up to 143.5 MPa. The indicated thermal efficiency (ITE) showed no obvious change with different injection parameters, and remained under 40% in all the tests.


Author(s):  
M. Nandeesh ◽  
R. Harishkumar ◽  
C.R. Rajashekar ◽  
N.R. Banapurmath ◽  
V.S. Yaliwal

The conventional diesel fuels are depleting at a faster pace. To reduce the burden on the economy, the reserves and sources for future has to be limited. The use of biodiesel derivatives from various sources and its blends in diesel engine has gained more importance in recent years. The present work investigates the feasibility of using dairy scum methyl esters (DSOME) of B20 blend in a modified single cylinder of common rail direct injection (CRDI) engine at a constant speed. Experiments were carried out at different injection timings from 25deg BTDC to 5deg ATDC with constant injection pressure as 600 bar. The fuel injection timing plays an important role in evaluating the performance, emission and combustion characteristics of the engine. The results show that the performance is improved with retarded injection timings compared to the operation of single cylinder DI engine fuelled with DSOME B20 biodiesel.


Author(s):  
Nik Rosli Abdullah ◽  
Rizalman Mamat ◽  
Miroslaw L Wyszynski ◽  
Anthanasios Tsolakis ◽  
Hongming Xu

2021 ◽  
Author(s):  
Thanigaivelan V ◽  
Lavanya R

Abstract Emission from the DI diesel engine is series setback for environment viewpoint. Intended for that investigates for alternative biofuel is persuaded. The important hitches with the utilization of biofuels and their blends in DI diesel engines are higher emanations and inferior brake-thermal efficiency as associated to sole diesel fuel. In this effort, Cashew nut shell liquid (CNSL) biodiesel, hydrogen and ethanol (BHE) mixtures remained verified in a direct-injection diesel engine with single cylinder to examine the performance and discharge features of the engine. The ethanol remained supplemented 5%, 10% and 15% correspondingly through enhanced CNSL as well as hydrogen functioned twin fuel engine. The experiments done in a direct injection diesel engine with single-cylinder at steadystate conditions above the persistent RPM (1500RPM). Throughout the experiment, emissions of pollutants such as fuel consumption rate (SFC), hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and pressure of the fuel were also measured. cylinders. The experimental results show that, compared to diesel fuel, the braking heat of the biodiesel mixture is reduced by 26.79-24% and the BSFC diminutions with growing addition of ethanol from the CNSL hydrogen mixture. The BTE upsurges thru a rise in ethanol proportion with CNSL hydrogen mixtures. Finally, the optimum combination of ethanol with CNSL hydrogen blends led to the reduced levels of HC and CO emissions with trivial upsurge in exhaust gas temperature and NOx emissions. This paper reconnoiters the routine of artificial neural networks (ANN) to envisage recital, ignition and discharges effect.


2005 ◽  
Author(s):  
Olivier Grondin ◽  
Christophe Letellier ◽  
Jean Maquet ◽  
Luis Antonio Aguirre ◽  
Frédéric Dionnet

2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Akhilendra Pratap Singh ◽  
Avinash Kumar Agarwal

Fuel injection parameters such as fuel injection pressure (FIP) and start of main injection (SoMI) timings significantly affect the performance and emission characteristics of a common rail direct injection (CRDI) diesel engine. In this study, a state-of-the-art single cylinder research engine was used to investigate the effects of fuel injection parameters on combustion, performance, emission characteristics, and particulates and their morphology. The experiments were carried out at three FIPs (400, 700, and 1000 bar) and four SoMI timings (4 deg, 6 deg, 8 deg, and 10 deg bTDC) for biodiesel blends [B20 (20% v/v biodiesel and 80% v/v diesel) and B40 (40% v/v biodiesel and 60% v/v diesel)] compared to baseline mineral diesel. The experiments were performed at a constant engine speed (1500 rpm), without pilot injection and exhaust gas recirculation (EGR). The experimental results showed that FIP and SoMI timings affected the in-cylinder pressure and the heat release rate (HRR), significantly. At higher FIPs, the biodiesel blends resulted in slightly higher rate of pressure rise (RoPR) and combustion noise compared to baseline mineral diesel. All the test fuels showed relatively shorter combustion duration at higher FIPs and advanced SoMI timings. The biodiesel blends showed slightly higher NOx and smoke opacity compared to baseline mineral diesel. Lower particulate number concentration at higher FIPs was observed for all the test fuels. However, biodiesel blends showed emission of relatively higher number of particulates compared to baseline mineral diesel. Significantly lower trace metals in the particulates emitted from biodiesel blend fueled engine was an important finding of this study. The particulate morphology showed relatively smaller number of primary particles in particulate clusters from biodiesel exhaust, which resulted in relatively lower toxicity, rendering biodiesel to be more environmentally benign.


2019 ◽  
pp. 146808741987854
Author(s):  
Hossein Ahmadian ◽  
Gholamhassan Najafi ◽  
Barat Ghobadian ◽  
Seyed Reza Hassan-Beygi ◽  
Seyed Salar Hoseini

The understanding of noise generation and source identification is vital in noise control. This research was conducted to experimentally evaluate combustion-induced noise and vibration using coherence and wavelet coherence estimates. A single-cylinder direct-injection diesel engine was chosen for experimental investigation. The independent variables for conducting experiments were injection timing with five levels of 22, 27, 32 (normal), 37, and 42 crank angles before the top dead center, and also the engine torque load with four levels of 55%, 70%, 85%, and 100% of the rated value. The signals of cylinder pressure, liner acceleration, and radiated sound pressure of the test engine were measured and recorded. Then, coherency and wavelet coherency experiments were carried out between cylinder pressure and liner acceleration, cylinder pressure and sound pressure, and liner acceleration and sound pressure signals in MATLAB software. The results indicated that increasing load would increase wavelet coherency between cylinder pressure and liner acceleration signals at frequencies higher than 1 kHz. The coherent regions between cylinder pressure and sound pressure signals were mainly at frequencies higher than 1 kHz while advancing the fuel injection timing had shifted the coherency toward lower frequencies. In general, with advancing injection timing, the coherent regions between liner acceleration and sound pressure signals have appeared at broader time ranges, especially at frequencies between 100 and 500 Hz. Comparing the results of the wavelet coherency and coherency tests, we concluded that wavelet coherency is a more accurate and descriptive tool in evaluating the combustion-induced noise and vibration.


Sign in / Sign up

Export Citation Format

Share Document