scholarly journals Stability indicating RP-HPLC and spectrophotometric methods for simultaneous estimation of sodium benzoate and cefdinir in the presence of its degradation products. Application to blank subtraction method

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Mahmoud Abdelfattah Mohamed ◽  
Mohamed El-kassem Mohamed Hassouna
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ramakrishna Kommana ◽  
Praveen Basappa

The present paper describes the development of quick stability indicating RP-HPLC method for the simultaneous estimation of codeine phosphate and chlorpheniramine maleate in the presence of its degradation products, generated from forced degradation studies. The developed method separates codeine phosphate and chlorpheniramine maleate in impurities/degradation products. Codeine phosphate and chlorpheniramine maleate and their combination drug product were exposed to acid, base, oxidation, dry heat, and photolytic stress conditions, and the stressed samples were analysed by proposed method. The proposed HPLC method utilizes the Shimadzu HPLC system on a Phenomenex C18 column (, 5 μ) using a mixture of 1% o-phosphoric acid in water : acetonitrile : methanol (78 : 10 : 12) mobile phase with pH adjusted to 3.0 in an isocratic elution mode at a flow rate of 1 mL/min, at 23°C with a load of 20 μL. The detection was carried out at 254 nm. The retention time of codeine phosphate and chlorpheniramine maleate was found to be around 3.47 min and 9.45 min, respectively. The method has been validated with respect to linearity, robustness, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ). The developed validated stability indicating HPLC method was found to be simple, accurate, and reproducible for the determination of instability of these drugs in bulk and commercial products.


Author(s):  
Dhiraj Kumar ◽  
Susanta Kumar Panda ◽  
Sudhir Kumar Sahoo

A precise, accurate, economical and simple stability indicating RP-HPLC method was developed for the estimation of Amlodipine (AML) and Olmesartan (OLM) in bulk and pharmaceutical dosage form. Method was performed on a octadecyl silane column with dimensions 4.6 x 250 mm having particle size 5 micron. The mobile phase used in the method is TEA Buffer (pH 3.0) and acetonitrile in proportion of 25:75 respectively. The flow rate was maintained at 1.0 ml/ min and effluent was monitored at 258 nm. The drug was subjected to acid and alkali hydrolysis, oxidation, photolysis and heat as stress conditions. The method was validated for specificity, linearity, precision, accuracy, robustness and system suitability. The retention times were observed at 2.39 min and 3.33 min for AML and OLM respectively. The standard curve was found linear over a range of 05–35 μg/ml for AML and OLM. Similarly an average correlation coefficient was also obtained at 0.999 for AML and OLM. The limit of quantitation (LOQ) of this method was 2μg/ml for Amlodipine and Olmesartan. The absolute recovery was 100% for Amlodipine and 100.3 for Olmesartan. Degradation products produced as a result of stress studies did not interfere with the detection of AML and OLM and the assay can thus be considered stability-indicating.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (04) ◽  
pp. 38-46
Author(s):  
H Parimi ◽  
C Bolla ◽  
B. M. Gandhi ◽  
B. R Vatchavai ◽  
S. S Kamatham ◽  
...  

The main objective of the present work was to develop a simple, precise, accurate and reproducible UV-Spectrophotometric and stability indicating RP-HPLC methods for simultaneous estimation of moxifloxacin HCl (MOX) and ketorolac tromethamine (KET) in bulk and ophthalmic dosage forms. UV Spectrophotometry was carried out by simultaneous equation method using distilled water : acetonitrile (50:50 V/V) as solvent. The wavelengths were found to be 295 nm for MOX and 322 nm for KET. The isobestic point was found to be 308 nm. The linearity range is 2-10 μg/mL for both MOX and KET with correlation co-efficient >0.99. The separation of these two drugs using RP-HPLC was achieved on a SHISHEDO C18, 250×4.6 mm, 5 micron size column with a mobile phase consisting of acetonitrile and acetate buffer (45:55 V/V) at pH 4.0 at a flow rate of 1 mL/min and UV detection at 308 nm. The retention times were observed to be 2.418 and 3.827 minutes for MOX and KET, respectively. Linearity was found to be 10-50 μg/mL for both MOX and KET, respectively. The two developed methods were successfully validated for accuracy, precision, linearity, limit of detection, limit of quantification and robustness. The two developed methods were validated according to ICH guidelines and were found to be with in the limits. The stress testing of the drugs individually was carried out under acidic, alkaline, oxidation, photo-stability and thermal degradation conditions and its degradation products were studied. These two methods could be used for simultaneous estimation of MOX and KET in bulk and ophthalmic dosage forms.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Thummala V. Raghava Raju ◽  
Noru Anil Kumar ◽  
Seshadri Raja Kumar ◽  
Annarapu Malleswara Reddy ◽  
Nittala Someswara Rao ◽  
...  

A sensitive, stability-indicating gradient RP-HPLC method has been developed for the simultaneous estimation of impurities of Guaifenesin and Dextromethorphan in pharmaceutical formulations. Efficient chromatographic separation was achieved on a Sunfire C18, 250 × 4.6 mm, 5 µm column with mobile phase containing a gradient mixture of solvents A and B. The flow rate of the mobile phase was 0.8 mL min−1 with column temperature of 50°C and detection wavelength at 224 nm. Regression analysis showed an r value (correlation coefficient) greater than 0.999 for Guaifenesin, Dextromethorphan, and their impurities. Guaifenesin and Dextromethorphan formulation sample was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal, and photolytic degradation. Guaifenesin was found stable and Dextromethorphan was found to degrade significantly in peroxide stress condition. The degradation products were well resolved from Guaifenesin, Dextromethorphan, and their impurities. The peak purity test results confirmed that the Guaifenesin and Dextromethorphan peak was homogenous and pure in all stress samples and the mass balance was found to be more than 98%, thus proving the stability-indicating power of the method. The developed method was validated according to ICH guidelines with respect to specificity, linearity, limits of detection and quantification, accuracy, precision, and robustness.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
V. Ashok Chakravarthy ◽  
B. B. V. Sailaja ◽  
Avvaru Praveen Kumar

The present work was the development of a simple, efficient, and reproducible stability-indicating reverse-phase high performance liquid chromatographic (RP-HPLC) method for simultaneous determination enrofloxacin (EFX) and its degradation products including ethylenediamine impurity, desfluoro impurity, ciprofloxacin impurity, chloro impurity, fluoroquinolonic acid impurity, and decarboxylated impurity in tablet dosage forms. The separation of EFX and its degradation products in tablets was carried out on Kromasil C-18(250×4.6 mm, 5 μm) column using 0.1% (v/v) TEA in 10 mM KH2PO4(pH 2.5) buffer and methanol by linear gradient program. Flow rate was 1.0 mL min−1with a column temperature of 35°C and detection wavelength was carried out at 278 nm and 254 nm. The forced degradation studies were performed on EFX tablets under acidic, basic, oxidation, thermal, humidity, and photolytic conditions. The degraded products were well resolved from the main active drug and also from known impurities within 65 minutes. The method was validated in terms of specificity, linearity, LOD, LOQ, accuracy, precision, and robustness as per ICH guidelines. The results obtained from the validation experiments prove that the developed method is a stability-indicating method and suitable for routine analysis.


Author(s):  
D. SUCHITRA ◽  
BATTU SATYANARAYANA

Objective: The principal objective of this study is to develop and validate a simple, new, fast, selective, precise, and economic stability-indicating the RP-HPLC method for the simultaneous estimation of Ethinyl estradiol and Gestodene in a bulk and pharmaceutical dosage form. Methods: The present method was developed and validated on a Waters HPLC system using Phenomenex Gemini C18(250 mm × 4.6 mm i.d., 5 µm particle size) column and mobile phase composition of phosphate buffer: Acetonitrile (75:25 v/v) and the pH was adjusted to 3.6 using dilute orthophosphoric acid. The system was regulated at 1.0 ml/min flow rate at 237 nm UV detection. Results: The two drugs Ethinyl Estradiol and Gestodene, were eluted at 1.788 min and 3.475 min retention time, respectively. The analytical parameters such as accuracy, precision, linearity, LOD, LOQ, ruggedness, and robustness were used for validating the developed method according to International Conference on Harmonisation [ICH] guidelines. Linearity was exhibited over the concentration range of 10-50µg/ml and 25-125µg/ml for Ethinyl Estradiol and Gestodene, respectively. The method revealed the Limit of Detection and Quantitation values for Ethinyl Estradiol and Gestodene were 1.399µg/ml, 3.909µg/ml and 4.24µg/ml, 11.85µg/ml, respectively. The stress testing was carried out to give rise to degradation products by exposing the drugs to acid, alkali, thermal, oxidative, photolytic, and hydrolytic degradation. The obtained data showed that the content of Active pharmaceutical ingredients and the degradation products were successfully separated without any interference, which confirmed the stability-indicating nature of the developed method. Conclusion: The new, simple, rapid, selective, precise, and economic stability-indicating RP-HPLC method has been successfully developed and validated. It can be satisfactorily applied for the periodic laboratory quantitative estimation of Ethinyl Estradiol and Gestodene in formulations and active pharmaceutical ingredients.


2020 ◽  
Vol 58 (4) ◽  
pp. 346-354
Author(s):  
Narendra Singh ◽  
Parveen Bansal ◽  
Mukesh Maithani ◽  
Yashpal Chauhan

Abstract A simple and precise novel stability-indicating method for the simultaneous estimation of tezacaftor and ivacaftor in combined tablet dosage form was developed and validated using reversed-phase high-performance liquid chromatography (RP-HPLC). The method is being reported for the first time and includes an estimation of degradation products produced post-stress conditions without any extraction or derivatization. The chromatographic separation of the drugs was achieved with a Symmetry Shield RP18 Column (100 Å, 5 μm, 4.6 mm × 250 mm) using a mixture of buffer, methanol and acetonitrile (42:27:31 v/v/v) as mobile phase. The buffer used in mobile phase contained 35 mM potassium dihydrogen phosphate, and its pH was adjusted to 7.0 ± 0.02 with 20% orthophosphoric acid. The instrument was set at flow rate of 1.2 mL min−1 at ambient temperature and the wavelength of UV-visible detector at 275 nm. The developed method could be suitable for the quantitative determination of these drugs in pharmaceutical preparations and also for quality control in bulk manufacturing. Stress testing was performed to prove the specificity. No interference was observed from its stress degradation products. The statistical analysis was done by using F-test and t-test at 95% confidence level.


2020 ◽  
Vol 11 (3) ◽  
pp. 3933-3941
Author(s):  
Supriya Reddy K ◽  
Chandan R. S. ◽  
Sai Charan A ◽  
Akshay N

A Specific, Linear and Precise reversed phase- HPLC was developed for the simultaneous estimation of Metformin HCl and Empagliflozin and the column used is Zorbax SB Phenyl with length, Internal diameter and Particle size of 250mm, 4.6 mm and 5µm respectively. The Mobile phase is Phosphate buffer: ACN: Methanol in ratio 45:25:30. 1.0 ml/min was the used flow rate and the wavelength was adjusted to 220nm for detection. The retention time for Empagliflozin was found to be 5.5min and for Metformin was 9.3min. Both the APIs exhibited good linearity revealing correlation coefficient(R) of 0.9999. The percentage recoveries for Metformin and Empagliflozin was found to be 100.0 – 100.9% and 100.3 – 102.4% respectively which was found to be within the limit. Forced degradation studies were performed and the developed method has suitable specificity as no interference is observed with impurity spiked sample and placebo of Drug Product. The proposed drug products were subjected to various types of stress conditions according to ICH Q1 guidelines like acidic, alkaline, neutral, peroxide, and Thermal conditions. The degradation products were well resolved from the main peaks , thus indicating the stability- indicating nature of the method. The method was validated with respect to system suitability, linearity, accuracy, precision and robustness according to ICH guidelines and the proposed RP-HPLC Method was accurate, precise and linear for the simultaneous determination of Metformin and Empagliflozin in bulk and pharmaceutical formulations.


Sign in / Sign up

Export Citation Format

Share Document