scholarly journals LCOS Spatial Light Modulator for Digital Holography

2021 ◽  
Vol 13 (4) ◽  
pp. 76
Author(s):  
Weijie Wu ◽  
Mike Pivnenko ◽  
Daping Chu

Liquid crystal on silicon (LCOS) spatial light modulator (SLM) is the most widely used optical engine for digital holography. This paper aims to provide an overview of the applications of phase-only LCOS in two-dimensional (2D) holography. It begins with a brief introduction to the holography theory along with its development trajectory, followed by the fundamental operating principle of phase-only LCOS SLMs. Hardware performance of LCOS SLMs (in terms of frame rate, phase linearity and flicker) and related experimental results are presented. Finally, potential improvements and applications are discussed for futuristic holographic displays. Full Text: PDF ReferencesM. Wolfke, Physikalische Zeitschrift 21, 495 (1920). DirectLink D. Gabor, "A New Microscopic Principle", Nature 161, 777 (1948). CrossRef H. Haken, "Laser Theory", Light and Matter 5, 14 (1970). CrossRef S. Benton, "Selected Papers on Three-dimensional displays", SPIE Press (2001). DirectLink X. Liang et al, "3D holographic display with optically addressed spatial light modulator", 3DTV-CON 2009 - 3rd 3DTV-Conference (2009). CrossRef J. Chen, W. Cranton, M. Fihn, "Handbook of Visual Display Technology", Springer (2012). CrossRef D. Rogers, "The chemistry of photography: From classical to digital technologies", Royal Society of Chemistry (2007). CrossRef S. Reichelt et al, "Depth cues in human visual perception and their realization in 3D displays", Proc. SPIE 7690, 76900B (2010). CrossRef A.W. Lohmann, D. Paris, "Binary Fraunhofer Holograms, Generated by Computer", Appl. Opt. 6, 1739 (1967). CrossRef J.W. Goodman, R.W. Lawrence, "Digital Image Formation from Electronically Detected Hologtrams", Appl. Phys. Lett 17, 77 (1967). CrossRef D.C. O'Brien, R.J. Mears, and W.A. Crossland, "Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators", Appl. Opt. 33, 2795, (1994). CrossRef R.W. Gerchberg, and W.O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures", Optik 35, 237 (1972). DirectLink M. Ernstoff, A. Leupp, M. Little, and H. Peterson, "Liquid crystal pictorial display", Proceedings of the 1973 International Electron Devices Meeting, IEEE, 548 (1973). CrossRef W.A. Crossland, P.J. Ayliffe, and P.W. Ross, "A dyed-phase-change liquid crystal display over a MOSFET switching array", Proc SID 23, 15 (1982). DirectLink M. Tang, and J. Wu, "Optical Correlation recoginition based on LCOS", Internation Symposium on Photoelectronic Detection and Imaging 2013, Optical Storage and Display Tech., 8913 (2013). CrossRef A. Hermerschmidt, et al. Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm, Complex Light and Optical Forces II, International Society for Optics and Photonics, 30282 (2008). CrossRef M. Wang, et al. "LCoS SLM Study and Its Application in Wavelength Selective Switch", Photonics 4, 22 (2017). CrossRef Z. Zhang, Z. You, and D. Chu, "Fundamentals of phase-only liquid crystal on silicon (LCOS) devices", Light Sci. & Appls. 3, e213 (2014). CrossRef D. Yang, and S. Wu, Fundamentals of liquid crystal devices, 2nd edition (Wiley 2015). CrossRef B. Prince, Semiconductor memories: A handbook of design, manufacture, and application, 2nd ed. (John Wiley & Sons 1996). DirectLink J.C. Jones, Liquid crystal displays, Handbook of optoelectronics: Enabling Technologies, 2nd ed. (CRC Press 2018). DirectLink A. Ayriyan, et al. "Simulation of the Static Electric Field Effect on the Director Orientation of Nematic Liquid Crystal in the Transition State", Phys. Wave Phenom. 27, 67 (2019). CrossRef S.M. Kelly, and M. O'Neil, Liquid crystal for electro-optic applications, Handbook of advanced electronics and photonic materials and devices 7, 15 (2000). DirectLink Y. Ji, et al., "Suspected Intraoperative Anaphylaxis to Gelatin Absorbable Hemostatic Sponge", J. SID 22, 4652 (2015). CrossRef X. Chang, Solution-processed ZnO nanoparticles for optically addressed spatial light modulator and other applications, Ph.D. thesis, (University of Cambridge, Cambridge 2019) CrossRef E. Moon, et al. "Holographic head-mounted display with RGB light emitting diode light source", Opt. Express 22, 6526 (2014). CrossRef G. Aad, et al. "Study of jet shapes in inclusive jet production in pp collisions at √s=7 TeV using the ATLAS detector", Phys Rev. D 83, 052003 (2011). CrossRef M. Pivnenko, K. Li, and D. Chu, "Sub-millisecond switching of multi-level liquid crystal on silicon spatial light modulators for increased information bandwidth", Opt. Express 29, 24614 (2021). CrossRef H. Yang, and D.P. Chu, "Phase flicker optimisation in digital liquid crystal on silicon devices", Opt. Express 27, 24556 (2019). CrossRef P. Bach-Y-Rita, et al. "Seeing with the Brain", Int. J. Hum. -Comput. Interact 15, 285 (2003). CrossRef Y. Tong, M. Pivnenko, and D. Chu, "Improvements of phase linearity and phase flicker of phase-only LCoS devices for holographic applications", Appl. Opt. 58, G248 (2019). CrossRef Y. Tong, M. Pivnenko, and D. Chu, "Implementation of 10-Bit Phase Modulation for Phase-Only LCOS Devices Using Deep Learning", Adv. Dev. & Instr. 1, 10 (2020). CrossRef H. Yang, and D. Chu, "Phase flicker optimisation in digital liquid crystal on silicon devices", Opt. Express 27, 24556 (2019). CrossRef J. García-Márquez, et al. "Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization", Opt.Express 16, 8431 (2008). CrossRef

Science ◽  
2019 ◽  
Vol 364 (6445) ◽  
pp. 1087-1090 ◽  
Author(s):  
Shi-Qiang Li ◽  
Xuewu Xu ◽  
Rasna Maruthiyodan Veetil ◽  
Vytautas Valuckas ◽  
Ramón Paniagua-Domínguez ◽  
...  

Rapidly developing augmented reality, solid-state light detection and ranging (LIDAR), and holographic display technologies require spatial light modulators (SLMs) with high resolution and viewing angle to satisfy increasing customer demands. Performance of currently available SLMs is limited by their large pixel sizes on the order of several micrometers. Here, we propose a concept of tunable dielectric metasurfaces modulated by liquid crystal, which can provide abrupt phase change, thus enabling pixel-size miniaturization. We present a metasurface-based transmissive SLM, configured to generate active beam steering with >35% efficiency and a large beam deflection angle of 11°. The high resolution and steering angle obtained provide opportunities to develop the next generation of LIDAR and display technologies.


1991 ◽  
Vol 219 ◽  
Author(s):  
Garret Moddel ◽  
Pierre R. Barbier

ABSTRACTA successful application for a-Si:H is as the photosensor in a liquid crystal optically addressed spatial light modulator (OASLM). We analyze the response time of an a-Si:H p-i-n photodiode in a “pseudo-OALSM,” in which the liquid crystal is replaced by an equivalent capacitor, under both forward and reverse bias. Under reverse bias the two important effects are the photocurrent response time, and residual trapped charge. Under forward bias the mechanism shifts from double injection regimes to ohmic transport as a function of voltage. We relate these characteristics to the operation of an OASLM.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1047
Author(s):  
Yasuki Sakurai ◽  
Masashi Nishitateno ◽  
Masahiro Ito ◽  
Kohki Takatoh

Liquid-Crystal-On-Silicon (LCOS) Spatial Light Modulator (SLM) is widely used as a programmable adaptive optical element in many laser processing applications with various wavelength light sources. We report UV durable liquid-crystal-on-silicon spatial light modulators for one-shot laser material processing. Newly developed LCOS consists of UV transparent materials and shows a lifetime 480 times longer than the conventional one in 9.7 W/cm2 illumination at 355 nm. We investigated the durability of polymerization inhibitor mixed liquid crystal in order to extend its lifetime.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pascuala García-Martínez ◽  
Ignacio Moreno ◽  
María del Mar Sánchez-López ◽  
Jordi Gomis ◽  
Pedro Martínez ◽  
...  

Supercontinuum (SC) lasers combine a broadband light spectrum with the unique properties of single-mode lasers. In this work we present an optical system to spectrally filter a SC laser source using liquid-crystal on silicon (LCoS) spatial light modulators (SLM). The proposed optical system disperses the input laser and the spectrally separated components are projected onto the LCoS-SLM, where the state of polarization of each wavelength is separately modulated. Finally, recombining the modulated spectral components results in an output laser source where the spectrum can be controlled dynamically from a computer. The system incorporates two branches to independently control the visible (VIS) and the near infrared (NIR) spectral content, thus providing a SC laser source from 450 to 1,600 nm with programmable spectrum. This new ability for controlling at will the wide spectra of the SC laser sources can be extremely useful for biological imaging applications.


2014 ◽  
Vol 613 ◽  
pp. 167-172 ◽  
Author(s):  
Jian Qi Qu ◽  
Li Min Zou ◽  
Yan Jun Chen ◽  
Xue Mei Ding

It is proposed in this paper to use phase only liquid crystal spatial light modulators to realize non-mechanical lateral and axial confocal microscopic laser scanning. With a phase only liquid crystal spatial light modulator used as a scanner to realize laser beam deflection, a confocal microscopic lateral beam scanning system is designed. A zoom illuminating lens is formed by incorporating a liquid crystal spatial light modulator along the confocal illumination light path, and thus the focus of the objective lens is axially shifted to realize the axial non-mechanical scanning. The theoretical analyses indicate that phase only liquid crystal spatial light modulators can be used to realize non-mechanical 3D confocal microscopic laser scanning.


2014 ◽  
Vol 53 (27) ◽  
pp. G105 ◽  
Author(s):  
Spozmai Panezai ◽  
Dayong Wang ◽  
Jie Zhao ◽  
Yunxin Wang ◽  
Lu Rong

Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 62
Author(s):  
Remington S. Ketchum ◽  
Pierre-Alexandre Blanche

Micro-electro mechanical systems (MEMS)-based phase-only spatial light modulators (PLMs) have the potential to overcome the limited speed of liquid crystal on silicon (LCoS) spatial light modulators (SLMs) and operate at speeds faster than 10 kHz. This expands the practicality of PLMs to several applications, including communications, sensing, and high-speed displays. The complex structure and fabrication requirements for large, 2D MEMS arrays with vertical actuation have kept MEMS-based PLMs out of the market in favor of LCoS SLMs. Recently, Texas Instruments has adapted its existing DMD technology for fabricating MEMS-based PLMs. Here, we characterize the diffraction efficiency for one of these PLMs and examine the effect of a nonlinear distribution of addressable phase states across a range of wavelengths and illumination angles.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 967
Author(s):  
Zhen Zeng ◽  
Zexiao Li ◽  
Fengzhou Fang ◽  
Xiaodong Zhang

Phase compensation is a critical step for the optical measuring system using spatial light modulator (SLM). The wavefront distortion from SLM is mainly caused by the phase modulation non-linearity and non-uniformity of SLM’s physical structure and environmental conditions. A phase modulation characteristic calibration and compensation method for liquid crystal on silicon spatial light modulator (LCoS-SLM) with a Twyman-Green interferometer is illustrated in this study. A method using two sequences of phase maps is proposed to calibrate the non-uniformity character over the whole aperture of LCoS-SLM at pixel level. A phase compensation matrix is calculated to correct the actual phase modulation of the LCoS-SLM and ensure that the designed wavefront could be achieved. Compared with previously known compensation methods, the proposed method could obtain the phase modulation characteristic curve of each pixel on the LCoS-SLM, rather than a mono look-up table (LUT) curve or multi-LUT curves corresponding to an array of blocks over the whole aperture of the LCoS-SLM. The experiment results show that the phase compensation precision could reach a peak-valley value of 0.061λ in wavefront and this method can be applied in generating freeform wave front for precise optical performance.


Sign in / Sign up

Export Citation Format

Share Document