scholarly journals Application of CBD Zinc Sulfide (ZnS) Film to Low Cost Antireflection Coating on Large Area Industrial Silicon Solar Cell

2004 ◽  
Vol 5 (1) ◽  
pp. 1-6 ◽  
Author(s):  
U. Gangopadhyay ◽  
Kyung-Hea Kim ◽  
S.K. Dhungel ◽  
D. Mangalaraj ◽  
J.H. Park ◽  
...  
2007 ◽  
Vol 2007 ◽  
pp. 1-5 ◽  
Author(s):  
U. Gangopadhyay ◽  
K. Kim ◽  
S. K. Dhungel ◽  
H. Saha ◽  
J. Yi

The low-cost chemical bath deposition (CBD) technique is used to prepare CBD-ZnS films as antireflective (AR) coating for multicrystalline silicon solar cells. The uniformity of CBD-ZnS film on large area of textured multicrystalline silicon surface is the major challenge of CBD technique. In the present work, attempts have been made for the first time to improve the rate of deposition and uniformity of deposited film by controlling film stoichiometry and refractive index and also to minimize reflection loss by proper optimization of molar percentage of different chemical constituents and deposition conditions. Reasonable values of film deposition rate (12.13 Å′/min.), good film uniformity (standard deviation <1), and refractive index (2.35) along with a low percentage of average reflection (6-7%) on a textured mc-Si surface are achieved with proper optimization of ZnS bath. 12.24% efficiency on large area (125 mm × 125 mm) multicrystalline silicon solar cells with CBD-ZnS antireflection coating has been successfully fabricated. The viability of low-cost CBD-ZnS antireflection coating on large area multicrystalline silicon solar cell in the industrial production level is emphasized.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hsi-Chien Liu ◽  
Gou-Jen Wang

The object of this paper is to develop a high antireflection silicon solar cell. A novel two-stage metal-assisted etching (MAE) method is proposed for the fabrication of an antireflective layer of a micronanohybrid structure array. The processing time for the etching on an N-type high-resistance (NH) silicon wafer can be controlled to around 5 min. The resulting micronanohybrid structure array can achieve an average reflectivity of 1.21% for a light spectrum of 200–1000 nm. A P-N junction on the fabricated micronanohybrid structure array is formed using a low-cost liquid diffusion source. A high antireflection silicon solar cell with an average efficiency of 13.1% can be achieved. Compared with a conventional pyramid structure solar cell, the shorted circuit current of the proposed solar cell is increased by 73%. The major advantage of the two-stage MAE process is that a high antireflective silicon substrate can be fabricated cost-effectively in a relatively short time. The proposed method is feasible for the mass production of low-cost solar cells.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Utpal Gangopadhyay ◽  
Sukhendu Jana ◽  
Sayan Das

We present 11.7% efficient p-type crystalline silicon solar cells with a nanoscale textured surface and no dielectric antireflection coating. We propose nanocrystalline-like textured surface consisting of nanocrystalline columnar structures of diameters from 50 to 100 nm and depth of about 500 nm formed by reactive-ion etching (RIE) in multihollow cathode system. This novel nano textured surface acts as an antireflective absorbing surface of c-Si abbreviate as ARNAB (antireflective nanoabsorber). Light shining on the surface of RIE-etched silicon bounces back and forth between the spikes in such a way that most of it never comes back. Radio frequency (RF) hollow cathode discharge allows an improvement of plasma density by an order of magnitude in comparison to standard RF parallel-plate discharge. Desirable black silicon layer has been achieved when RF power of about 20 Watt per one hollow cathode glow is applied for our multihollow cathode system. The RF power frequency was 13.56 MHz. The antireflection property of ARNAB textured surface has been investigated and compared with wet-textured and PECVD coated silicon samples. Solar cell using low-cost spin-on coating technique has been demonstrated in this paper. We have successfully achieved 11.7% efficient large area (98 cm2) ARNAB textured crystalline silicon solar cell using low-cost spin-on coating (SOD) doping.


2003 ◽  
Vol 76 (4) ◽  
pp. 529-534 ◽  
Author(s):  
P. Panek ◽  
M. Lipiński ◽  
R. Ciach ◽  
K. Drabczyk ◽  
E. Bielańska

Author(s):  
Khorshed Alam ◽  
Tanisha Mehreen ◽  
Mohammad Khairul Basher ◽  
Mohammod Abu Sayid Haque ◽  
Subir C. Ghosh ◽  
...  

2018 ◽  
Vol 181 ◽  
pp. 15-20 ◽  
Author(s):  
Yaoju Zhang ◽  
Jun Zheng ◽  
Chaolong Fang ◽  
Zhihong Li ◽  
Xuesong Zhao ◽  
...  

Author(s):  
Hung-Hsien Li ◽  
Albert S Lin ◽  
Yan-Kai Zhong ◽  
Sze-Ming Fu ◽  
Shih-Yun Lai ◽  
...  

2010 ◽  
Vol 25 (12) ◽  
pp. 2426-2429 ◽  
Author(s):  
Guangjun Wang ◽  
Gang Cheng ◽  
Binbin Hu ◽  
Xiaoli Wang ◽  
Shaoming Wan ◽  
...  

In this paper, polycrystalline CuIn(SxSe1–x)2 thin films with tunable x and Eg (band gap) values were prepared by controlling the sulfurization temperature (T) of CuInSe2 thin films. X-ray diffraction indicated the CuIn(SxSe1–x)2 films exhibited a homogeneous chalcopyrite structure. When T increases from 150 to 500 °C, x increases from 0 to 1, and Eg increases from 0.96 to 1.43 eV. The relations between x and Eg and the sulfurization process of CuIn(SxSe1–x)2 thin films have been discussed. This work provides an easy and low-cost technique for preparing large area absorber layers of solar cell with tunable Eg.


Sign in / Sign up

Export Citation Format

Share Document