Preparation of CuIn(SxSe1–x)2 thin films with tunable band gap by controlling sulfurization temperature of CuInSe2

2010 ◽  
Vol 25 (12) ◽  
pp. 2426-2429 ◽  
Author(s):  
Guangjun Wang ◽  
Gang Cheng ◽  
Binbin Hu ◽  
Xiaoli Wang ◽  
Shaoming Wan ◽  
...  

In this paper, polycrystalline CuIn(SxSe1–x)2 thin films with tunable x and Eg (band gap) values were prepared by controlling the sulfurization temperature (T) of CuInSe2 thin films. X-ray diffraction indicated the CuIn(SxSe1–x)2 films exhibited a homogeneous chalcopyrite structure. When T increases from 150 to 500 °C, x increases from 0 to 1, and Eg increases from 0.96 to 1.43 eV. The relations between x and Eg and the sulfurization process of CuIn(SxSe1–x)2 thin films have been discussed. This work provides an easy and low-cost technique for preparing large area absorber layers of solar cell with tunable Eg.

2015 ◽  
Vol 1107 ◽  
pp. 678-683 ◽  
Author(s):  
Lam Mui Li ◽  
Azmizam Manie Mani ◽  
Saafie Salleh ◽  
Afishah Alias

Zinc Oxide (ZnO) has attracted much attention because of its high optical transmittance approximately ~80 % with a wide band gap of (3.3 eV at 300 K) and a relatively low cost material. ZnO thin films were deposited on plastic substrate using RF powered magnetron sputtering method. The target used is ZnO disk with 99.99 % purity. The sputtering processes are carried out with argon gas that flow from 10-15 sccm. Argon is used to sputter the ZnO target because the ability of argon that can remove ZnO layer effectively by sputtering with argon plasma bombardment. The deposited ZnO thin films are characterized using X-Ray Diffraction (XRD) and UV-Vis Spectrometer. The analysis of X-ray diffraction show that good crystalline quality occurs at nominal thickness of 400 nm. The optical studies showed that all the thin films have high average transmittance of approximately 80 % and the estimated value of optical band gap is within 3.1 eV-3.3 eV range.


Author(s):  
J.P. Goral ◽  
M.M. Al-Jassim ◽  
D. Albin ◽  
J.R. Tuttle ◽  
R. Noufi

Polycrystalline thin films of CuInSe2 and CuGaSe2 are currently being developed as low-cost photovoltaic devices. These films are vacuum-deposited onto molybdenum metallized alumina substrates. The film composition may be varied by manipulation of the deposition parameters. For photovoltaic applications, the desired phase has a stoichiometry close to CuInSe2. This compound is a zincblende variant, the cations and anions occupying separate fcc sublattices. Under certain growth conditions, the Cu and In atoms adopt an ordered configuration within the cationic sublattice resulting in the tetragonal chalcopyrite structure. Even when the deposition parameters are manipulated to produce nominally stoichiometric films, powder x-ray traces often exhibit anomalous peaks indicative of the presence of impurity phases. The identification of these minority phases by x-ray diffraction alone is not possible in this materials system due to low peak intensity and overlap considerations. The formation of the secondary phases has a detrimental effect on the electrical and optical properties of the thin film device.


2012 ◽  
Vol 463-464 ◽  
pp. 602-606 ◽  
Author(s):  
Dong Hau Kuo ◽  
Hsien Pen Wu

Cu2ZnSnSe4(CZTSe) thin films with the advantages of low cost, abundance in resources, and the suitable band-gap of 0.9~1.1 eV have been the potential materials for solar cells, though the Cu(In,Ga)Se2 thin films have received most of the attentions. In this study, CZTSe thin films were prepared by direct-current (D.C.) sputtering using three self-made CZTSe targets in different compositions. The sputtered films displayed a preferred orientation in (112) by the X-ray diffraction analysis. The films were also characterized by field-emission scanning electron microscopy and energy dispersion spectroscopy. The films had the band-gap of 0.8~1.08 eV analyzed by absorption spectroscopy. CZTSe films were p-type and had a low electrical conductivity of 10-3 ohm-cm and a high carrier concentration of 1020~1021cm-2.


Author(s):  
Dinesh Pathak ◽  
Sanjay Kumar ◽  
Sonali Andotra ◽  
Jibin Thomas ◽  
Navneet Kaur ◽  
...  

In this study, we have investigated new tailored organic semiconductors materials for the optoelectronic application, such as organic solar cells. The carbon-based organic semiconductor material has promising advantages in organic thin-film form. Moreover, due to its low cost, organic thin-films are suitable and cheaper than inorganic thin-film. The band gap of organic semiconductors materials can be tuned and mostly lies between 2.0eV to 4eV and the optical absorption edge of organic semiconductors typically lies in between 1.7eV to 3eV. They can be easily tailored by modifying the carbon chain and legends and looks promising for engineering the band gap to harness solar spectrum. In this work, with new tailored organic semiconductors the solution route is explored which is low cost processing method. (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3,4-dimethoxyaniline thin-films are processed by spin coating method with changing concentration such as 0.05 wt% and 0.08 wt%. Thin films of Organic semiconductors were prepared on glass substrate and annealed at 55°C. The structural and optical behaviour of (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3,4-dimethoxyaniline organic semiconductors thin films is studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and UV-Visible Spectroscopy technique. The XRD data of synthesized sample suggests the Nano crystallinity of the Organic layers. The SEM micrographs shows the dense packing when we increase the wt% 0.05 to 0.08. Analysis of the optical absorption measurements found that the engineered band gap of synthesized thin films are 2.18eV, 2.35eV, 2.36eV, 2.52eV and 2.65eV which suggest suitability for applications of Optoelectronic devices such as solar cell. Such light weight, eco-friendly and disposable new carbon based materials seems to have potential to replace other traditional hazardous heavy materials for future eco-friendly flat fast electronics. Keywords: Thin-film, solar cell, tailored organic semiconductors, XRD, SEM, UV-Vis spectroscopy.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jie Zhang ◽  
Bo Long ◽  
Shuying Cheng ◽  
Weibo Zhang

Copper zinc tin sulfur (CZTS) thin films have been extensively studied in recent years for their advantages of low cost, high absorption coefficient (≥104 cm−1), appropriate band gap (~1.5 eV), and nontoxicity. CZTS thin films are promising materials of solar cells like copper indium gallium selenide (CIGS). In this work, CZTS thin films were prepared on glass substrates by vacuum evaporation and sulfurization method. Sn/Cu/ZnS (CZT) precursors were deposited by thermal evaporation and then sulfurized in N2+ H2S atmosphere at temperatures of 360–560°C to produce polycrystalline CZTS thin films. It is found that there are some impurity phases in the thin films with the sulfurization temperature less than 500°C, and the crystallite size of CZTS is quite small. With the further increase of the sulfurization temperature, the obtained thin films exhibit preferred (112) orientation with larger crystallite size and higher density. When the sulfurization temperature is 500°C, the band gap energy, resistivity, carrier concentration, and mobility of the CZTS thin films are 1.49 eV, 9.37 Ω · cm,1.714×1017 cm−3, and 3.89 cm2/(V · s), respectively. Therefore, the prepared CZTS thin films are suitable for absorbers of solar cells.


2012 ◽  
Vol 534 ◽  
pp. 156-159 ◽  
Author(s):  
Dong Hua Fan ◽  
Rong Zhang ◽  
Hui Ren Peng

Cu2ZnSnS4 (CZTS) thin films are prepared by sulfurizing the precursors deposited by vacuum evaporation methods. The samples sulfurized at 500°C for 3h shows the strong (112) diffraction peak at 28.45˚, suggesting the successful synthesis of CZTS thin films. The X-ray diffraction shows that CZTS thin film prepared in Sn-poor condition have the best crystallinity. The Sn-dependent crystallite size was calculated to be 19.53-21.03 nm. In addition, we found that the optical band gap with various Sn contents can be modulated at 1.48-1.85 eV


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3859 ◽  
Author(s):  
Kyriakos Mouratis ◽  
Valentin Tudose ◽  
Cosmin Romanitan ◽  
Cristina Pachiu ◽  
Oana Tutunaru ◽  
...  

A new approach regarding the development of nanostructured V2O5 electrochromic thin films at low temperature (250 °C), using air-carrier spray deposition and ammonium metavanadate in water as precursor is presented. The obtained V2O5 films were characterized by X-ray diffraction, scanning electron microscopy and Raman spectroscopy, while their electrochromic response was studied using UV-vis absorption spectroscopy and cyclic voltammetry. The study showed that this simple, cost effective, suitable for large area deposition method can lead to V2O5 films with large active surface for electrochromic applications.


Author(s):  
Anuar Kassim ◽  
Tan Wee Tee ◽  
Ho Soon Min ◽  
Shanthi Monohorn ◽  
Saravanan Nagalingam

PbSe thin films are prepared by chemical bath deposition technique over microscope glass substrates from an aqueous acidic bath containing lead nitrate and sodium selenate. The influence of bath temperature on the properties of PbSe film is investigated. The X-ray diffraction analysis showed the deposited films were polycrystalline and having the (111) orientation. The surface morphology study revealed that the grains have cubic shape crystal. The band gap energy was decreased from 2.0 to 1.3 eV as the bath temperature was increased from 40 to 80°C. The films deposited at 80°C showed good crystallinity and uniformly distributed over the surface of substrate with larger grain sizes. Therefore, the optimum bath temperature is 80°C. Keywords: Lead selenide; X-ray diffraction; Band gap energy; Chemical bath deposition; Thin films DOI: 10.3126/kuset.v6i2.4021Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.126-132


2012 ◽  
Vol 131 (3) ◽  
pp. 600-604 ◽  
Author(s):  
Mahesh Chand Sharma ◽  
Balram Tripathi ◽  
Sumit Kumar ◽  
Subodh Srivastava ◽  
Y.K. Vijay

2019 ◽  
Vol 24 (2) ◽  
pp. 44-48
Author(s):  
Leela Pradhan Joshi ◽  
Jeny Bhatta ◽  
Tika Bahadur Katuwal ◽  
Bhim Prasad Kafle ◽  
Deependra Das Mulmi

 X-ray diffraction, Raman investigations, band gap energy of zinc oxide nanoparticles (ZnO NPs) along with current-voltage characteristic curves of an assembled dye-sensitized solar cell (DSSC) are presented in this article. ZnO NPs were first synthesized with and without potassium nitrate (KNO3) salt by precipitation method from precursor solutions of zinc acetate and sodium hydroxide. Then, their thin films were deposited on FTO substrates from the paste made with acetic-acid glacial, and Triton X-100 in ethanol by doctor blade method. The X-ray diffraction (XRD) pattern of ZnO NPs prepared without KNO3 annealed at 500°C showed a hexagonal wurtzite structure with preferred orientation along (101) planes and crystallite size of 25 nm. Very similar XRD pattern was found for ZnO NPs prepared with KNO3. The crystallite size was found decreased to 17 nm for ZnO NPs made with KNO3 salt. Raman spectrum of ZnO NPs showed the presence of E2 high or E2 (2) peak at 437 cm-1. The optical band gaps of the ZnO thin films prepared from ZnO NPs with and without KNO3 were measured to be of 3.16 eV and 3.26 eV, respectively. After sensitizing the above-prepared ZnO films by dye extract of Artocarpus lakoocha, the dye-sensitized solar cells were prepared, and their performance was tested by measuring I-V curves under light illumination of the power density of 1000 W/m2. The measurement showed highest Isc and Voc of 44 μA and 326 mV, respectively.


Sign in / Sign up

Export Citation Format

Share Document