Biochemical evaluation of the pprotective impact of silymarin against cyclophosphamide induced hepatotoxicity in rats

Author(s):  
KM El Deib ◽  
MM Ahmed ◽  
NZ Ahmed
Author(s):  
Anne M. Klinkner ◽  
Crystal R. Waites ◽  
Peter J. Bugelski ◽  
William D. Kerns

A primary effort in the understanding of the progression of atherosclerotic disease has been methods development for visualization of the atherosclerotic plaque. We introduce a new method for the qualitative analysis of lipids in atherosclerotic fatty streaks which also retains those lipids for biochemical evaluation. An original aspect of the process is the ability to view an entire fatty streak en face, selectively stained for specific lipid classes within the lesion.New Zealand white rabbits were fed a high cholesterol diet(0.15%-0.3% for 14 wks). The aorta was removed and fixed in Carson's phosphate buffered formaldehyde followed by dual staining in the fluorescent dyes Nile red and filipin. Stock solutions of nile red(0.5mg/ml acetone) and filipin(2.5mg/ml dimethyl formamide) were prepared and kept at -20°C; all subsequent steps were at RT. 0.5cm × 1.0cm pieces of aorta were trimmed and adventitia removed. The pieces were then washed 3×15 min in PBS w/o CaMg, soaked in Nile red(NR)/filipin(Fl) stain(100(il NR stock + 200μl Fl stock in 10 ml PBS for 30 min, washed in PBS 3×30 min, rinsed with distilled water, mounted(Crystal Mount, Biomedia) and coverslipped and viewed by fluorescence microscopy.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
HA Ogbunugafor ◽  
VI Okochi ◽  
J Okpuzor ◽  
OS Odesanmi

2011 ◽  
Vol 3 (10) ◽  
pp. 1-5
Author(s):  
Zahran F Zahran F ◽  
◽  
El-Ghareb M El-Ghareb M ◽  
Nashwa Barakat ◽  
El-Naggar I El-Naggar I

2017 ◽  
Vol 2 (3) ◽  
pp. 43-52
Author(s):  
M.M. Abozid ◽  
S.N. Draz ◽  
S.A. El- Kadousy ◽  
Samia M. Khaleil ◽  
A.A. El- Debas

2018 ◽  
Vol 18 (5) ◽  
pp. 397-405 ◽  
Author(s):  
Leonardo L.G. Ferreira ◽  
Rafaela S. Ferreira ◽  
David L. Palomino ◽  
Adriano D. Andricopulo

Introduction: The glycolytic enzyme fructose-1,6-bisphosphate aldolase is a validated molecular target in human African trypanosomiasis (HAT) drug discovery, a neglected tropical disease (NTD) caused by the protozoan Trypanosoma brucei. Herein, a structure-based virtual screening (SBVS) approach to the identification of novel T. brucei aldolase inhibitors is described. Distinct molecular docking algorithms were used to screen more than 500,000 compounds against the X-ray structure of the enzyme. This SBVS strategy led to the selection of a series of molecules which were evaluated for their activity on recombinant T. brucei aldolase. The effort led to the discovery of structurally new ligands able to inhibit the catalytic activity of the enzyme. Results: The predicted binding conformations were additionally investigated in molecular dynamics simulations, which provided useful insights into the enzyme-inhibitor intermolecular interactions. Conclusion: The molecular modeling results along with the enzyme inhibition data generated practical knowledge to be explored in further structure-based drug design efforts in HAT drug discovery.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 356
Author(s):  
Eva Shannon Schiffrer ◽  
Matic Proj ◽  
Martina Gobec ◽  
Luka Rejc ◽  
Andrej Šterman ◽  
...  

The immunoproteasome is a multicatalytic protease that is predominantly expressed in cells of hematopoietic origin. Its elevated expression has been associated with autoimmune diseases, various types of cancer, and inflammatory diseases. Selective inhibition of its catalytic activities is therefore a viable approach for the treatment of these diseases. However, the development of immunoproteasome-selective inhibitors with non-peptidic scaffolds remains a challenging task. We previously reported 7H-furo[3,2-g]chromen-7-one (psoralen)-based compounds with an oxathiazolone warhead as selective inhibitors of the chymotrypsin-like (β5i) subunit of immunoproteasome. Here, we describe the influence of the electrophilic warhead variations at position 3 of the psoralen core on the inhibitory potencies. Despite mapping the chemical space with different warheads, all compounds showed decreased inhibition of the β5i subunit of immunoproteasome in comparison to the parent oxathiazolone-based compound. Although suboptimal, these results provide crucial information about structure–activity relationships that will serve as guidance for the further design of (immuno)proteasome inhibitors.


Sign in / Sign up

Export Citation Format

Share Document