scholarly journals Determination of the levels of heavy metal (Cu, Fe, Ni, Pb and Cd) up take of pumpkin (Telfairia occidentalis) leaves cultivated on contaminated soil

2014 ◽  
Vol 18 (1) ◽  
pp. 71 ◽  
Author(s):  
OG Echem
2011 ◽  
Vol 414 ◽  
pp. 27-31
Author(s):  
An Ping Liu ◽  
Xiao Nan Sun ◽  
Fang Zhao ◽  
Xiao Song Sun ◽  
Wei Ren ◽  
...  

In the remediation of heavy metal contaminated site, determining the remediation boundary of contaminated site and amount of contaminated soil are important link of the entire work. This paper uses surfer software to draw out a picture of Pb-contamination distribution in different soil layers, determines a remediation boundary, and provides a reliable basis and brings great convenience for later repair work.


2020 ◽  
Vol 9 (1) ◽  
pp. 736-750
Author(s):  
Xilu Chen ◽  
Xiaomin Li ◽  
Dandan Xu ◽  
Weichun Yang ◽  
Shaoyuan Bai

AbstractChromium (Cr) is a common toxic heavy metal that is widely used in all kinds of industries, causing a series of environmental problems. Nanoscale zero- valent iron (nZVI) is considered to be an ideal remediation material for contaminated soil, especially for heavy metal pollutants. As a material of low toxicity and good activity, nZVI has been widely applied in the in situ remediation of soil hexavalent chromium (Cr(vi)) with mobility and toxicity in recent years. In this paper, some current technologies for the preparation of nZVI are summarized and the remediation mechanism of Cr(vi)-contaminated soil is proposed. Five classified modified nZVI materials are introduced and their remediation processes in Cr(vi)-contaminated soil are summarized. Key factors affecting the remediation of Cr(vi)-contaminated soil by nZVI are studied. Interaction mechanisms between nZVI-based materials and Cr(vi) are explored. This study provides a comprehensive review of the nZVI materials for the remediation of Cr(vi)-contaminated soil, which is conducive to reducing soil pollution.


Sign in / Sign up

Export Citation Format

Share Document