scholarly journals Development of sustained release tablets containing solid dispersions of baclofen

2015 ◽  
Vol 5 (2) ◽  
pp. 220
Author(s):  
KH Janardhana ◽  
R Deveswaran ◽  
S Bharath ◽  
BV Basavaraj ◽  
V Madhavan
2021 ◽  
Vol 22 (8) ◽  
Author(s):  
Qazi Amir Ijaz ◽  
Sumera Latif ◽  
Qurat-ul-ain Shoaib ◽  
Memoona Rashid ◽  
Muhammad Sohail Arshad ◽  
...  

Author(s):  
ABHIK KAR ◽  
ABDUL BAQUEE AHMED

Objective: The present study was aimed to enhance the solubility of poorly water soluble drug Ibuprofen using solid dispersion technique and to develop sustained release tablets containing solid dispersion granules of the optimized batch. Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) with analgesic, antipyretic, and anti-inflammatory propertiesMethods: Solid dispersions of Ibuprofen were prepared by using PEG 20000 and Poloxamer 407 in different weight ratios by fusion and solvent evaporation method. Drug-carrier physical mixtures were also prepared. Solid dispersions were characterized by saturation solubility, drug content, in vitro dissolution, FTIR and DSC analysis. Solid dispersion formulation, SDF9 (PEG 20000 and Poloxamer 407, 1:3:3) prepared by solvent evaporation method was considered as the optimized batch. Sustained release tablets containing the solid dispersion granules of the optimized batch were prepared by direct compression method using HPMC K100M at three concentrations (10%, 14%, 18% w/w). The prepared formulations were evaluated for hardness, thickness, weight variation, friability, in vitro dissolution studies and release kinetics modelling.Results: Solid dispersion formulation, SDF9showed 95.09% drug release in 60 min and considered as the optimized batch. Tablet formulation, FT3 (HPMC K100M 18% w/w) showed 96% drug release for 12 h.Conclusion: Solid dispersions of ibuprofen using a combination of PEG 20000 and poloxamer 407 by solvent evaporation method may result in higher aqueous solubility of the drug. Also sustained release tablets containing solid dispersion granules of ibuprofen, using HPMC K100M may be a promising approach to extend the release rate of the drug from the solid dispersion for 12 h.


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


2020 ◽  
Vol 16 (7) ◽  
pp. 950-959
Author(s):  
Yu Li ◽  
Xiangwen Kong ◽  
Fan Hu

Background: Clarithromycin is widely used for infections of helicobacter pylori. Clarithromycin belongs to polymorphic drug. Crystalline state changes of clarithromycin in sustained release tablets were found. Objective: The aim of this study was to find the influential factor of the crystal transition of clarithromycin in preparation process of sustained-release tablets and to investigate the possible interactions between the clarithromycin and pharmaceutical excipients. Methods and Results: The crystal transition of active pharmaceuticals ingredients from form II to form I in portion in clarithromycin sustained release tablets were confirmed by x-ray powder diffraction. The techniques including differential scanning calorimetry and infrared spectroscopy, x-ray powder diffraction were used for assessing the compatibility between clarithromycin and several excipients as magnesium stearate, lactose, sodium carboxymethyl cellulose, polyvinyl-pyrrolidone K-30 and microcrystalline cellulose. All of these methods showed compatibilities between clarithromycin and the selected excipients. Alcohol prescription simulation was also done, which showed incompatibility between clarithromycin and concentration alcohol. Conclusion: It was confirmed that the reason for the incompatibility of clarithromycin with high concentration of alcohol was crystal transition.


2018 ◽  
Vol 8 (2) ◽  
pp. 153-158
Author(s):  
Praveen Radhakrishnan ◽  
Shinu Chacko ◽  
Raman Saraswathi ◽  
Palamadai Neelakantam Krishnan

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 804
Author(s):  
Ewelina Juszczyk ◽  
Kamil Kisło ◽  
Paweł Żero ◽  
Ewa Tratkiewicz ◽  
Maciej Wieczorek ◽  
...  

Sustained-release (SR) formulations may appear advantageous in first-in-human (FIH) study of innovative medicines. The newly developed SR matrix tablets require prolonged maintenance of API concentration in plasma and should be reliably assessed for the risk of uncontrolled release of the drug. In the present study, we describe the development of a robust SR matrix tablet with a novel G-protein-coupled receptor 40 (GPR40) agonist for first-in-human studies and introduce a general workflow for the successful development of SR formulations for innovative APIs. The hydrophilic matrix tablets containing the labeled API dose of 5, 30, or 120 mg were evaluated with several methods: standard USP II dissolution, bio-predictive dissolution tests, and the texture and matrix formation analysis. The standard dissolution tests allowed preselection of the prototypes with the targeted dissolution rate, while the subsequent studies in physiologically relevant conditions revealed unwanted and potentially harmful effects, such as dose dumping under an increased mechanical agitation. The developed formulations were exceptionally robust toward the mechanical and physicochemical conditions of the bio-predictive tests and assured a comparable drug delivery rate regardless of the prandial state and dose labeled. In conclusion, the introduced development strategy, when implemented into the development cycle of SR formulations with innovative APIs, may allow not only to reduce the risk of formulation-related failure of phase I clinical trial but also effectively and timely provide safe and reliable medicines for patients in the trial and their further therapy.


2020 ◽  
Vol 13 (12) ◽  
pp. 5909-5913
Author(s):  
Mohammad Akthar Sulthana ◽  
Mangulal Kethavath ◽  
Fazil Ahmad ◽  
Abeer Mohammed Al-Subaie

Sign in / Sign up

Export Citation Format

Share Document