A family of block methods for special second order initial value problems [I.V.Ps].

Author(s):  
VA Aladeselu
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Emmanuel A Areo ◽  
Nosimot O Adeyanju ◽  
Sunday J Kayode

This research proposes the derivation of a class of hybrid methods for solution of second order initial value problems (IVPs) in block mode. Continuous linear multistep method of two cases with step number k = 4 is developed by interpolating the basis function at certain grid points and collocating the differential system at both grid and off-grid points. The basic properties of the method including order, error constant, zero stability, consistency and convergence were investigated. In order to examine the accuracy of the methods, some differential problems of order two were solved and results generated show a better performance when comparison is made with some current methods.Keywords- Block Method, Hybrid Points, Initial Value Problems, Power Series, Second Order 


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1752
Author(s):  
Higinio Ramos ◽  
Samuel N. Jator ◽  
Mark I. Modebei

There are dozens of block methods in literature intended for solving second order initial-value problems. This article aimed at the analysis of the efficiency of k-step block methods for directly solving general second-order initial-value problems. Each of these methods consists of a set of 2k multi-step formulas (although we will see that this number can be reduced to k+1 in case of a special equation) that provides approximate solutions at k grid points at once. The usual way to obtain these formulas is by using collocation and interpolation at different points, which are not all necessarily in the mesh (it may also be considered intra-step or off-step points). An important issue is that for each k, all of them are essentially the same method, although they can adopt different formulations. Nevertheless, the performance of those formulations is not the same. The analysis of the methods presented give some clues as how to select the most appropriate ones in terms of computational efficiency. The numerical experiments show that using the proposed formulations, the computing time can be reduced to less than half.


2014 ◽  
Vol 2014 ◽  
pp. 1-28
Author(s):  
Jiang Zhu ◽  
Dongmei Liu

Some delta-nabla type maximum principles for second-order dynamic equations on time scales are proved. By using these maximum principles, the uniqueness theorems of the solutions, the approximation theorems of the solutions, the existence theorem, and construction techniques of the lower and upper solutions for second-order linear and nonlinear initial value problems and boundary value problems on time scales are proved, the oscillation of second-order mixed delat-nabla differential equations is discussed and, some maximum principles for second order mixed forward and backward difference dynamic system are proved.


Sign in / Sign up

Export Citation Format

Share Document