Computational fluid dynamics (CFD) simulation of hot air flow pattern in cabinet drying of osmo-pretreated green bell pepper

2017 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Michael Mayokun Odewole ◽  
Musliu Olushola Sunmonu ◽  
Samuel Kehinde Oyeniyi ◽  
Oluwatosin Adedamola Adesoye
Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6243
Author(s):  
Siti Noratikah Che Deraman ◽  
Saddam Hussein Abo Sabah ◽  
Shaharudin Shah Zaini ◽  
Taksiah A. Majid ◽  
Amin Al-Fakih

Most Malaysian rural houses are categorized as non-engineered buildings and vulnerable to damage during events such as windstorms due to the fact that these houses lack engineering considerations. These houses are characterized by having an attached kitchen house, and many of these houses were previously damaged by thunderstorms. The current research investigated the air flow characteristics changes surrounding these houses as a result of the presence of the kitchen. The roof pitch, position, gap height, and overhang were investigated using computational fluid dynamics (CFD) simulations. The results showed that the kitchen position at the center resulted in a slight increase in the suction on the ridge of the roof; however, it significantly altered the flow pattern in the windward and leeward directions. The results also showed that the roof overhang, roof pitch, and kitchen position contributed severely to the damage of the rural house. Moreover, the highest suction occurred at the roof ridge when the kitchen was located at the center of the rural house (Cp = −2.28). Therefore, the authors believe that it is more advantageous to have a kitchen connected to the core as it reduces the pressure on the roof of the core during thunderstorm events.


Author(s):  
S N A Ahmad Termizi ◽  
C Y Khor ◽  
M A M Nawi ◽  
Nurlela Ahmad ◽  
Muhammad Ikman Ishak ◽  
...  

2013 ◽  
Vol 368-370 ◽  
pp. 619-623
Author(s):  
Zhen Liu ◽  
Xiao Ling Wang ◽  
Ai Li Zhang

For the purpose of avoiding the deficiency of the traditional construction ventilation, the ventilation of the underground main powerhouse is simulated by the computational fluid dynamics (CFD) to optimize ventilation parameters. A 3D unsteady RNG k-ε model is performed for construction ventilation in the underground main powerhouse. The air-flow field and CO diffusion in the main powerhouse are simulated and analyzed. The two construction ventilation schemes are modelled for the main powerhouse. The optimized ventilation scheme is obtained by comparing the air volume and pressure distributions of the different ventilation schemes.


2013 ◽  
Vol 368-370 ◽  
pp. 599-602 ◽  
Author(s):  
Ian Hung ◽  
Hsien Te Lin ◽  
Yu Chung Wang

This study focuses on the performance of air conditioning design at the Dazhi Cultural Center and uses a computational fluid dynamics (CFD) simulation to discuss the differences in wind velocity and ambient indoor temperature between all-zone air conditioning design and stratified air conditioning design. The results have strong implications for air conditioning design and can improve the indoor air quality of assembly halls.


2021 ◽  
Author(s):  
Darren Jia

Diabolo is a popular game in which the object can be spun at up to speeds of 5000 rpm. This high spin velocity gives the diabolo the necessary angular momentum to remain stable. The shape of the diabolo generates an interesting air flow pattern. The viscous air applies a resistive torque on the fast spinning diabolo. Through computational fluid dynamics (CFD) simulations it's shown that the resistive torque has an interesting dependence on the angular speed of the diabolo. Further, the geometric shape of the diabolo affects the dependence of torque on angular speed.


2014 ◽  
Vol 11 (6) ◽  
Author(s):  
Paolo Sala ◽  
Paola Gallo Stampino ◽  
Giovanni Dotelli

This work is part of a project whose final aim is the realization of an auxiliary power fuel cell generator. It was necessary to design and develop bipolar plates that would be suitable for this application. Bipolar plates have a relevant influence on the final performances of the entire device. A gas leakage or a bad management of the water produced during the reaction could be determinant during operations and would cause the failure of the stack. The development of the bipolar plates was performed in different steps. First, the necessity to make an esteem of the dynamics that happen inside the feeding channels led to perform analytical calculations. The values found were cross-checked performing a computational fluid dynamics (CFD) simulation; finally, it was defined the best pattern for the feeding channels, so that to enhance mass transport and achieve the best velocity profile. The bipolar plates designed were machined and assembled in a laboratory scale two cells prototype stack. Influences of the temperature and of the humidity were evaluated performing experiments at 60 deg and 70 deg and between 60% and 100% of humidity of the reactant gasses. The best operating point achieved in one of these conditions was improved by modifying the flow rates of the reactant, in order to obtain the highest output power, and it evaluated the reliability of the plates in experiments performed for longer times, at fixed voltages.


Sign in / Sign up

Export Citation Format

Share Document