scholarly journals Influence of Bud Position on Mother Stem And Soaking Duration on Sprouting of Bamboo Cuttings

2013 ◽  
Vol 28 (1) ◽  
Author(s):  
B Ntirugulirwa ◽  
T Asiimwe ◽  
Je Gapusi ◽  
A Mutaganda ◽  
G Nkuba ◽  
...  
Keyword(s):  
1987 ◽  
Vol 67 (2) ◽  
pp. 599-603 ◽  
Author(s):  
A. W. McKEOWN

Shoots of the early-maturing potato (Solatium tuberosum L.) cultivar Jemseg often do not emerge uniformly when cut seed pieces are planted in cold soil. Under controlled temperatures of 10, 15 and 20 °C, shoots from whole tubers and basal portions of Jemseg tubers emerged later than those from apical portions of seed tubers. The delayed emergence of the basal portion was most pronounced at low temperatures and ranged from 5 to 17 d. Emergence from basal vs. apical portions of Conestoga was delayed by 10 d at 10 °C and by 4 d at 15 °C, only when seed tubers with a single dominant apical sprout were used. There was no delay at 20 °C. The variable time to emergence of shoots in the field can be explained by delayed emergence from basal buds on cut seed pieces.Key words: Potato, cultivars, emergence, bud position, temperature, seed tuber


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 363
Author(s):  
Wenshuo Xu ◽  
Na Lu ◽  
Masao Kikuchi ◽  
Michiko Takagaki

Nasturtium is a popular herbal plant, widely cultivated as culinary and medicinal plants all over the world. However, the seed propagation of nasturtium is inefficient, and in-vitro propagation is sophisticated and high-cost. In this study, the cutting propagation method was employed to produce nasturtium seedlings. We aimed to determine the optimal conditions for cutting propagation of nasturtium seedlings by investigating the effects of node position and electric conductivity (EC) of nutrient solution on the root formation of the cuttings. Cuttings from five node positions (apical bud, 2nd node, 3rd node, 4th node, and 5th node) were subjected to water and five EC (1.0, 2.0, 3.0, 4.0, and 5.0 dS m−1) treatments with a hydroponic cultivation system in a plant factory. Results showed that all cuttings rooted successfully within two weeks. The cuttings from the apical bud position rooted earliest and produced the most roots regardless of EC level. Cuttings from other node positions produced longer roots and heavier root fresh and dry weights than those from the apical bud position. The cuttings under EC of 1.0 dS m−1 had the greatest root number, the longest root length, and the heaviest root fresh and dry weights regardless of node positions. The EC of 1.0 dS m−1 is considered the best condition for nasturtium cuttings for the range of EC tested in this study, and the cuttings from all the five node positions can be used as seedling materials.


1955 ◽  
Vol 6 (6) ◽  
pp. 823 ◽  
Author(s):  
AJ Antcliff ◽  
WJ Webster ◽  
P May

Pruning experiments are described in which the number of buds per vine was kept constant, and the number and length of canes was varied inversely. The position of the pruning cut affected per cent. bud burst at only the two terminal bud positions, and did not affect per cent. fruitful shoots a t any bud position. For any length of cane likely to be used in practice, per cent. bud burst in the most fruitful region would not be affected. For a constant pruning level there were no significant differences in yield when length of cane was varied from 11 to 18 buds, but in years of high fruitfulness yield was significantly depressed when the canes were 25 buds long. Apical dominance could also be demonstrated on vines with canes of variable length, and it was shown that the inhibiting agent did not move transversely.


2001 ◽  
Vol 12 (8) ◽  
pp. 2497-2518 ◽  
Author(s):  
Heidi A. Harkins ◽  
Nicolas Pagé ◽  
Laura R. Schenkman ◽  
Claudio De Virgilio ◽  
Sidney Shaw ◽  
...  

The bipolar budding pattern of a /α Saccharomyces cerevisiae cells appears to depend on persistent spatial markers in the cell cortex at the two poles of the cell. Previous analysis of mutants with specific defects in bipolar budding identifiedBUD8 and BUD9 as potentially encoding components of the markers at the poles distal and proximal to the birth scar, respectively. Further genetic analysis reported here supports this hypothesis. Mutants deleted for BUD8 orBUD9 grow normally but bud exclusively from the proximal and distal poles, respectively, and the double-mutant phenotype suggests that the bipolar budding pathway has been totally disabled. Moreover, overexpression of these genes can cause either an increased bias for budding at the distal (BUD8) or proximal (BUD9) pole or a randomization of bud position, depending on the level of expression. The structures and localizations of Bud8p and Bud9p are also consistent with their postulated roles as cortical markers. Both proteins appear to be integral membrane proteins of the plasma membrane, and they have very similar overall structures, with long N-terminal domains that are both N- andO-glycosylated followed by a pair of putative transmembrane domains surrounding a short hydrophilic domain that is presumably cytoplasmic. The putative transmembrane and cytoplasmic domains of the two proteins are very similar in sequence. When Bud8p and Bud9p were localized by immunofluorescence and tagging with GFP, each protein was found predominantly in the expected location, with Bud8p at presumptive bud sites, bud tips, and the distal poles of daughter cells and Bud9p at the necks of large-budded cells and the proximal poles of daughter cells. Bud8p localized approximately normally in several mutants in which daughter cells are competent to form their first buds at the distal pole, but it was not detected in abni1 mutant, in which such distal-pole budding is lost. Surprisingly, Bud8p localization to the presumptive bud site and bud tip also depends on actin but is independent of the septins.


2004 ◽  
Vol 23 (4) ◽  
pp. 269-279
Author(s):  
Vered Naor ◽  
Jaime Kigel ◽  
Meira Ziv ◽  
Moshe Flaishman

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 520b-520
Author(s):  
Randy R. Lee ◽  
John K. Fellman ◽  
Esmaeil Fallahi

The influence of flower bud position on bloom, fruit quality, and fruit maturity was investigated on `Rome Beauty' apple (Malus domestica Borkh.). Limbs on trees containing spur terminal flower buds and lateral flower buds were tagged and the number of blossoms counted every three days until bloom ended. At harvest, fruit from each bud type were selected and seed number, fresh weight, fruit quality characteristics, and onset of ethylene production were measured. Spur terminal flower buds began blooming earlier, blossomed for a longer period of time, and produced more blossoms than lateral flower buds. Fruit from spur terminal flower buds had more seeds, were heavier, and contained more starch than lateral bud fruit. Lateral bud fruit had higher pressure values, due to smaller size, and higher soluble solids, due to consumption of starch reserves. Fruit color and titratable acidity were not significantly different regardless of bud position. Spur terminal fruit started producing ethylene eight days later than lateral bud fruit, indicating they were maturing less quickly. Cultivars such as `Fuji', `Gala', and `Braeburn' display similar growth and fruiting habits.


2013 ◽  
Vol 28 (1) ◽  
Author(s):  
B Ntirugulirwa ◽  
T Asiimwe ◽  
Je Gapusi ◽  
A Mutaganda ◽  
G Nkuba ◽  
...  
Keyword(s):  

2009 ◽  
Vol 66 (4) ◽  
pp. 540-542 ◽  
Author(s):  
Ester Alice Ferreira ◽  
Moacir Pasqual ◽  
Augusto Tulmann Neto

Fig breeding programs through conventional methods are rare in many countries, e.g. Brazil, since the wasp Blastophaga psenes, which is responsible for the natural pollination, is not present. For these cases a low cost alternative for the breeding program is the induction of physical mutagenesis by radiation. The sensivity of fig explant buds of different sizes to gamma radiation were evaluated. Fig plantlets "Roxo de Valinhos" already established in vitro were classified by size in 2.5 to 4.5 cm, 5 to 9 7 cm and 8 to 10 cm long, and irradiated with: 10, 20, 30, 40 and 50 Gy doses. After irradiation each plantlet was cut in pieces containing one-bud and transferred to WPM culture medium, according to the bud position: medium and apical. Explants were grown in a growth room for 90 days when, explant mortality, root formation, height of aerial part, number of buds and plantlet weight were evaluated. Doses of up to 50 Gy do not cause plantlet death and that doses larger than 30 Gy inhibit root formation. Therefore, the 30 Gy dose may be recommended for the irradiation of fig plantlets larger than 2.5 cm.


Sign in / Sign up

Export Citation Format

Share Document