scholarly journals Control measures of malaria transmission in Rwanda based on SEIR SEI mathematical model

Author(s):  
Emmanuel Hakizimana ◽  
Jean Marie Ntaganda

This research paper investigated the dynamics of malaria transmission in Rwanda using the nonlinear forces of infections which are included in SEIR-SEI mathematical model for human and mosquito populations. The mathematical modeling of malaria studies the interaction among the human and mosquito populations in controlling malaria transmission and eventually eliminating malaria infection. This work investigates the optimal control strategies for minimizing the rate of malaria transmission by applying three control variables through Caputo fractional derivative. The optimal control problems for malaria model found the control parameters which minimize infection. The numerical simulation showed that the number of exposed and infected people and mosquito population are decreased due to the control strategies. Finally, this work found out that the transmission of malaria in Rwanda can be minimized by using the combination of controls like Insecticide Treated bed Nets (ITNs), Indoor Residual Spray (IRS) and Artemisinin based Combination Therapies (ACTs).

2021 ◽  
Vol 29 (2) ◽  
pp. 71-91
Author(s):  
E.A. Bakare ◽  
B.O. Onasanya ◽  
S. Hoskova-Mayerova ◽  
O. Olubosede

Abstract The aim of this paper is to analyse the potential impact of multiple current interventions in communities with limited resources in order to obtain optimal control strategies and provide a basis for future predictions of the most effective control measures against the spread of malaria. We developed a population-based model of malaria transmission dynamics to investigate the effectiveness of five different interventions. The model captured both the human and the mosquito compartments. The control interventions considered were: educational campaigns to mobilise people for diagnostic test and treatment and to sleep under bed nets; treatment through mass drug administration; indoor residual spraying(IRS) with insecticide to reduce malaria transmission; insecticide treated net (ITN) to reduce morbidity; and regular destruction of mosquito breeding sites to reduce the number of new mosquito and bites/contact at dusks and dawn. Analysis of the potential impact of the multiple control interventions were carried out and the optimal control strategies that minimized the number of infected human and mosquito and the cost of applying the various control interventions were determined.


Author(s):  
Jairos Kahuru ◽  
Livingstone S. Luboobi ◽  
Yaw Nkansah-Gyekye

Tungiasis is a permanent penetration of female sand flea“Tunga penetrans”into the epidermis of its host. It affects human beings and domestic and sylvatic animals. In this paper, we apply optimal control techniques to a Tungiasis controlled mathematical model to determine the optimal control strategy in order to minimize the number of infested humans, infested animals, and sand flea populations. In an attempt to reduce Tungiasis infestation in human population, the control strategies based on personal protection, personal treatment, educational campaign, environmental sanitation, and insecticidal treatments on the affected parts as well as on animal fur are considered. We prove the existence of optimal control problem, determine the necessary conditions for optimality, and then perform numerical simulations. The numerical results showed that the control strategy comprises all five control measures and that which involves the three control measures of insecticide control, insecticidal dusting on animal furs, and environmental hygiene has the significant impact on Tungiasis transmission. Therefore, fighting against Tungiasis infestation in endemic settings, multidimensional control process should be employed in order to achieve the maximum benefits.


Computation ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 76
Author(s):  
Gilberto González-Parra ◽  
Miguel Díaz-Rodríguez ◽  
Abraham J. Arenas

In this paper, we study and explore two control strategies to decrease the spread of Zika virus in the human and mosquito populations. The control strategies that we consider in this study are awareness and spraying campaigns. We solve several optimal control problems relying on a mathematical epidemic model of Zika that considers both human and mosquito populations. The first control strategy is broad and includes using information campaigns, encouraging people to use bednetting, wear long-sleeve shirts, or similar protection actions. The second control is more specific and relies on spraying insecticides. The control system relies on a Zika mathematical model with control functions. To develop the optimal control problem, we use Pontryagins’ maximum principle, which is numerically solved as a boundary value problem. For the mathematical model of the Zika epidemic, we use parameter values extracted from real data from an outbreak in Colombia. We study the effect of the costs related to the controls and infected populations. These costs are important in real life since they can change the outcomes and recommendations for health authorities dramatically. Finally, we explore different options regarding which control measures are more cost-efficient for society.


2021 ◽  
Vol 53 (1) ◽  
pp. 134-163
Author(s):  
Temesgen Duressa Keno ◽  
Oluwole Daniel Makinde ◽  
Legesse Lemecha Obsu

In this study, we proposed and analyzed the optimal control and cost-effectiveness strategies for malaria epidemics model with impact of temperature variability. Temperature variability strongly determines the transmission of malaria. Firstly, we proved that all solutions of the model are positive and bounded within a certain set with initial conditions. Using the next-generation matrix method, the basic reproductive number at the present malaria-free equilibrium point was computed. The local stability and global stability of the malaria-free equilibrium were depicted applying the Jacobian matrix and Lyapunov function respectively when the basic reproductive number is smaller than one. However, the positive endemic equilibrium occurs when the basic reproductive number is greater than unity. A sensitivity analysis of the parameters was conducted; the model showed forward and backward bifurcation. Secondly, using Pontryagin’s maximum principle, optimal control interventions for malaria disease reduction are described involving three control measures, namely use of insecticide-treated bed nets, treatment of infected humans using anti-malarial drugs, and indoor residual insecticide spraying. An analysis of cost-effectiveness was also conducted. Finally, based on the simulation of different control strategies, the combination of treatment of infected humans and insecticide spraying was proved to be the most efficient and least costly strategy to eradicate the disease.


2018 ◽  
Vol 20 (3) ◽  
pp. 1-16
Author(s):  
Mojeeb AL-Rahman EL-Nor Osman ◽  
Appiagyei Ebenezer ◽  
Isack E. Kibona

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
N. H. Sweilam ◽  
S. M. Al-Mekhlafi ◽  
A. O. Albalawi ◽  
D. Baleanu

Abstract In this paper, a novel coronavirus (2019-nCov) mathematical model with modified parameters is presented. This model consists of six nonlinear fractional order differential equations. Optimal control of the suggested model is the main objective of this work. Two control variables are presented in this model to minimize the population number of infected and asymptotically infected people. Necessary optimality conditions are derived. The Grünwald–Letnikov nonstandard weighted average finite difference method is constructed for simulating the proposed optimal control system. The stability of the proposed method is proved. In order to validate the theoretical results, numerical simulations and comparative studies are given.


2021 ◽  
Vol 5 (4) ◽  
pp. 261
Author(s):  
Silvério Rosa ◽  
Delfim F. M. Torres

A Caputo-type fractional-order mathematical model for “metapopulation cholera transmission” was recently proposed in [Chaos Solitons Fractals 117 (2018), 37–49]. A sensitivity analysis of that model is done here to show the accuracy relevance of parameter estimation. Then, a fractional optimal control (FOC) problem is formulated and numerically solved. A cost-effectiveness analysis is performed to assess the relevance of studied control measures. Moreover, such analysis allows us to assess the cost and effectiveness of the control measures during intervention. We conclude that the FOC system is more effective only in part of the time interval. For this reason, we propose a system where the derivative order varies along the time interval, being fractional or classical when more advantageous. Such variable-order fractional model, that we call a FractInt system, shows to be the most effective in the control of the disease.


2015 ◽  
Vol 08 (06) ◽  
pp. 1550077 ◽  
Author(s):  
Bruno Buonomo

A malaria model is formulated which includes the enhanced attractiveness of infectious humans to mosquitoes, as result of host manipulation by malaria parasite, and the human behavior, represented by insecticide-treated bed-nets usage. The occurrence of a backward bifurcation at R0 = 1 is shown to be possible, which implies that multiple endemic equilibria co-exist with a stable disease-free equilibrium when the basic reproduction number is less than unity. This phenomenon is found to be caused by disease-induced human mortality. The global asymptotic stability of the endemic equilibrium for R0 > 1 is proved, by using the geometric method for global stability. Therefore, the disease becomes endemic for R0 > 1 regardless of the number of initial cases in both the human and vector populations. Finally, the impact on system dynamics of vector's host preferences and bed-net usage behavior is investigated.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Aristide G. Lambura ◽  
Gasper G. Mwanga ◽  
Livingstone Luboobi ◽  
Dmitry Kuznetsov

A deterministic mathematical model for the transmission and control of cointeraction of helminths and tuberculosis is presented, to examine the impact of helminth on tuberculosis and the effect of control strategies. The equilibrium point is established, and the effective reproduction number is computed. The disease-free equilibrium point is confirmed to be asymptotically stable whenever the effective reproduction number is less than the unit. The analysis of the effective reproduction number indicates that an increase in the helminth cases increases the tuberculosis cases, suggesting that the control of helminth infection has a positive impact on controlling the dynamics of tuberculosis. The possibility of bifurcation is investigated using the Center Manifold Theorem. Sensitivity analysis is performed to determine the effect of every parameter on the spread of the two diseases. The model is extended to incorporate control measures, and Pontryagin’s Maximum Principle is applied to derive the necessary conditions for optimal control. The optimal control problem is solved numerically by the iterative scheme by considering vaccination of infants for Mtb, treatment of individuals with active tuberculosis, mass drug administration with regular antihelminthic drugs, and sanitation control strategies. The results show that a combination of educational campaign, treatment of individuals with active tuberculosis, mass drug administration, and sanitation is the most effective strategy to control helminth-Mtb coinfection. Thus, to effectively control the helminth-Mtb coinfection, we suggest to public health stakeholders to apply intervention strategies that are aimed at controlling helminth infection and the combination of vaccination of infants and treatment of individuals with active tuberculosis.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Hongwu Tan ◽  
Hui Cao

We build and study the transmission dynamics of a hand-foot-mouth disease model with vaccination. The reproduction number is given, the existence of equilibria is obtained, and the global stability of disease-free equilibrium is proved by constructing the Lyapunov function. We also apply optimal control theory to the hand-foot-mouth disease model. The treatment and vaccination interventions are considered in the hand-foot-mouth disease model, and the optimal control strategies based on minimizing the cost of intervention and minimizing the number of the infected people are given. Numerical results show the usefulness of the optimization strategies.


Sign in / Sign up

Export Citation Format

Share Document