scholarly journals A new sensitive HPLC/UV method for simultaneous determination of paclitaxel, sorafenib and omeprazole in standard solutions and spiked plasma: Application to in-vitro and in-vivo evaluation of paclitaxel polymeric nanoformulations

2021 ◽  
Vol 20 (9) ◽  
pp. 1949-1959
Author(s):  
Mirina Sakhi ◽  
Abad Khan ◽  
Ismail Khan ◽  
Zafar Iqbal ◽  
Sumaira Irum Khan ◽  
...  

Purpose: To develop a simple, novel, sensitive and rapid reverse phase high performance liquid chromatographic method for simultaneous determination of paclitaxel, sorafenib and omeprazole in standard solutions and spiked human plasma and its application to the in-vitro and in-vivo evaluation of paclitaxel polymeric nanoparticle formulations.Methods: The method was tested for the assessment of paclitaxel, omeprazole and sorafenib using tamoxifen citrate as internal standard. The analysis was performed at a wavelength of 235 nm using Thermo HS C18 column, 40 °C column oven temperature, acetonitrile and water (70:30 v/v, pH 3.37 adjusted with phosphoric acid) as a mobile phase and at a flow rate of 0.8 ml/min. All analytes were extracted by simple protein precipitation method using acetonitrile. The linearity was assessed in the concentration range of 1 - 2000 ng/mL for paclitaxel, omeprazole and sorafenib.Results: The developed chromatographic method effectively separated omeprazole, paclitaxel, sorafenib and IS with retention time of 3.93, 5.18, 6.43 and 9.93 min, respectively. The chromatograms of the three target compounds and IS showed good resolution and peak separation. The LOD of the method was 1, 5 and. 5 ng/mL while the LOQ was 2, 7.5 and 10 ng/mL, for paclitaxel, sorafenib and omeprazole, respectively.Conclusion: The proposed RP-HPLC–UV method for the assessment of paclitaxel, sorafenib and omeprazole in standard solutions and spiked plasma is simple, economical, sensitive and robust. The method is also suitable for the analysis of paclitaxel in nanoformulations and for its pharmacokinetic studies in an animal model.

RSC Advances ◽  
2015 ◽  
Vol 5 (95) ◽  
pp. 78336-78351 ◽  
Author(s):  
Wei Liu ◽  
Dandan He ◽  
Yudan Zhu ◽  
Xuemei Cheng ◽  
Hao Xu ◽  
...  

An UPLC-MS/MS method was developed to simultaneously determinate vasicine and its main metabolites and applied to the pharmacokinetic study. In addition, the anti-butyrylcholinesterase activity of component in plasma was evaluatedin vitro.


2020 ◽  
Vol 12 (16) ◽  
pp. 2166-2175 ◽  
Author(s):  
Dong-Gyun Han ◽  
Kyu-Sang Kim ◽  
Seong-Wook Seo ◽  
Young Mee Baek ◽  
Yunjin Jung ◽  
...  

We developed a sensitive, simple and validated HPLC-FL method for simultaneous determination of FEB and DIC in rat plasma. The method requires a relatively small volume of sample, has simple sample preparation and excellent sensitivity.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1210
Author(s):  
Sultan Alshehri ◽  
Abdullah Alanazi ◽  
Ehab M. Elzayat ◽  
Mohammad A. Altamimi ◽  
Syed S. Imam ◽  
...  

Gefitinib (Gef) is a poorly water-soluble antitumor drug, which shows poor absorption/bioavailability after oral administration. Therefore, this study was carried out to develop Gef solid dispersions (SDs) using different carriers and different techniques in order to enhance its dissolution and oral absorption/bioavailability. Various SD formulations of Gef were established using fusion and microwave methods utilizing Soluplus, Kollidone VA64, and polyethylene glycol 4000 (PEG 4000) as the carriers. Developed SDs of Gef were characterized physicochemically and evaluated for in vitro dissolution and in vivo pharmacokinetic studies. The physicochemical evaluation revealed the formation of Gef SDs using fusion and microwave methods. In vitro dissolution studies indicated significant release of Gef from all SDs compared to the pure Gef. Optimized SD of Gef (S2-MW) presented significant release of Gef (82.10%) compared with pure Gef (21.23%). The optimized Gef SD (S2) was subjected to in vivo pharmacokinetic evaluation in comparison with pure Gef in rats. The results indicated significant enhancement in various pharmacokinetic parameters of Gef from an optimized SD S2 compared to the pure Gef. In addition, Gef-SD S2 resulted in remarkable improvement in bioavailability compared to the pure Gef. Overall, this study suggested that the prepared Gef-SD by microwave method showed marked enhancement in dissolution and bioavailability.


Author(s):  
S Srikanth Reddy ◽  
G Suresh

The current research is aimed at developing liquid self-nanoemulsifying drug delivery system (liquid-SNEDDS) of Manidipine for enhanced solubility and oral bioavailability. The Manidipine SNEDDS are formulated with excipients comprising of Capmul MCM (oil phase), Transcutol P (surfactant) Lutrol L 300 as co-surfactant. The prepared fifteen formulations of Manidipine SNEDDS analysed for emulsification time, percentage transmittance, particle size, in vitro drug release, and stability studies. In vivo pharmacokinetic studies of the optimized formulation were carried out in Wistar rats in comparison with control (pure drug). The morphology of Manidipine SNEDDS indicates spherical shape with uniform particle distribution. The percentage drug release from optimized formulation F14 is 98.24 ± 5.14%. The particle size F14 formulation was 22.4 nm and Z-Average 23.3 nm. The PDI and zeta potential of Manidipine SNEDDS optimized formulation (F14) were 0.313 and-5.1mV respectively. From in vivo bioavailability data the optimized formulation exhibited a significantly greater Cmax and Tmax of the SNEDDS was found to be 3.42 ± 0.46ng/ml and 2.00 ± 0.05 h respectively. AUC0-∞ infinity for formulation was significantly higher (11.25 ± 3.45 ng.h/ml) than pure drug (7.45 ± 2.24ng. h/ml). Hence a potential SNEDDS formulation of Manidipine developed with enhanced solubility and bioavailability.


Sign in / Sign up

Export Citation Format

Share Document