scholarly journals Effects of land use change on streamflow and stream water quality of a coastal catchment

Water SA ◽  
2017 ◽  
Vol 43 (1) ◽  
pp. 139 ◽  
Author(s):  
CR Petersen ◽  
NZ Jovanovic ◽  
DC Le Maitre ◽  
MC Grenfell
2021 ◽  
Vol 109 ◽  
pp. 105679
Author(s):  
António Carlos Pinheiro Fernandes ◽  
Lisa Maria de Oliveira Martins ◽  
Fernando António Leal Pacheco ◽  
Luís Filipe Sanches Fernandes

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1123 ◽  
Author(s):  
Yu Song ◽  
Xiaodong Song ◽  
Guofan Shao ◽  
Tangao Hu

The land use and land cover changes in rapidly urbanized regions is one of the main causes of water quality deterioration. However, due to the heterogeneity of urban land use patterns and spatial scale effects, a clear understanding of the relationships between land use and water quality remains elusive. The primary purpose of this study is to investigate the effects of land use on water quality across multi scales in a rapidly urbanized region in Hangzhou City, China. The results showed that the response characteristics of stream water quality to land use were spatial scale-dependent. The total nitrogen (TN) was more closely related with land use at the circular buffer scale, whilst stronger correlations could be found between land use and algae biomass at the riparian buffer scales. Under the circular buffer scale, the forest and urban greenspace were more influential to the TN at small buffer scales, whilst significant positive or negative correlations could be found between the TN and the areas of industrial land or the wetland and river as the buffer scales increased. The redundancy analysis (RDA) showed that more than 40% variations in water quality could be explained by the landscape metrics at all circular and riparian buffer scales, and this suggests that land use pattern was an important factor influencing water quality. The variation in water quality explained by landscape metrics increased with the increase of buffer size, and this implies that land use pattern could have a closer correlation with water quality at larger spatial scales.


2021 ◽  
Vol 13 (16) ◽  
pp. 3309
Author(s):  
Jian Wu ◽  
Sidong Zeng ◽  
Linhan Yang ◽  
Yuanxin Ren ◽  
Jun Xia

The spatiotemporal characteristics of river water quality are the key indicators for ecosystem health evaluation in basins. Land use patterns, as one of the main driving forces of water quality change, affect stream water quality differently with the variations in the spatiotemporal scales. Thus, quantitative analysis of the relationship between different land cover types and river water quality contributes to a better understanding of the effects of land cover on water quality, the landscape planning of water quality protection, and integrated water resources management. Based on water quality data of 2006–2018 at 18 typical water quality stations in the Yangtze River basin, this study analyzed the spatial and temporal variation characteristics of water quality by using the single-factor water quality identification index through statistical analysis. Furthermore, the Spearman correlation analysis method was adopted to quantify the spatial-scale and temporal-scale effects of various land uses, including agricultural land (AL), forest land (FL), grassland (GL), water area (WA), and construction land (CL), on the stream water quality of dissolved oxygen (DO), chemical oxygen demand (CODMn), and ammonia (NH3-N). The results showed that (1) in terms of temporal variation, the water quality of the river has improved significantly and the tributaries have improved more than the main rivers; (2) in the spatial variation respect, the water quality pollutants in the tributaries are significantly higher than those in the main stream, and the concentration of pollutants increases with the decrease of the distance from the estuary; and (3) the correlation between DO and land use is low, while that between NH3-N, CODMn, and land use is high. CL and AL have a negative effect on water quality, while FL and GL have a purifying effect on water quality. In particular, AL and CL have a significant positive correlation with pollutants in water. Compared with NH3-N, CODMn has a higher correlation with land use at a larger scale. The results highlight the spatial scale and seasonal dependence of land use on water quality, which can provide a scientific basis for land management and seasonal pollution control.


2018 ◽  
Vol 622-623 ◽  
pp. 1553-1561 ◽  
Author(s):  
Valdemir Rodrigues ◽  
Joan Estrany ◽  
Mauricio Ranzini ◽  
Valdir de Cicco ◽  
José Mª. Tarjuelo Martín-Benito ◽  
...  

CATENA ◽  
2021 ◽  
Vol 198 ◽  
pp. 105055
Author(s):  
Xiaojing Ni ◽  
Prem B. Parajuli ◽  
Ying Ouyang ◽  
Padmanava Dash ◽  
Courtney Siegert

1983 ◽  
Vol 12 (3) ◽  
pp. 351-358 ◽  
Author(s):  
W. A. Dick ◽  
J. V. Bonta ◽  
F. Haghiri ◽  
J. R. Page

2015 ◽  
Vol 73 ◽  
pp. 98-108 ◽  
Author(s):  
Xubiao Yu ◽  
Joanna Hawley-Howard ◽  
Amber L. Pitt ◽  
Jun-Jian Wang ◽  
Robert F. Baldwin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document