Simple Continuous and Simultaneous Determination of Multiple Sulfonamide Residues

1993 ◽  
Vol 56 (12) ◽  
pp. 1067-1072 ◽  
Author(s):  
CHIN-EN TSAI ◽  
FUSAO KONDO

A new continuous separation method was developed for the determination of nine different sulfonamides (sulfaguanidine, sulfamethazine, sulfapyridine, sulfadiazine, sulfathiazole, sulfamethizole, sulfamethoxazole, sulfadimethoxine, and sulfaquinoxaline). Bioassay on minimum medium seeded with Bacillus subtilis ATCC 6633 was carried out for detection. An extract taken from an agar block of the clear inhibition zone on minimum medium produced by a mixture of sulfonamides was then subjected to high-performance liquid chromatography. For identification, high-performance liquid chromatography analyses were performed using two different columns and analytical conditions. Using a μ-Bondapak C18 column, the sulfonamides were separated at room temperature using a mobile phase of methanol: 0.1 M KH2PO4 (30:70, vol/vol) at a flow rate of 1.0 ml/min. A variable wavelength detector set at 265 nm and recorder set at 4 mm/min were used for the detection. The entire mixture was resolved as eight peaks from 4.68 to 50.78 min. When an Asahipak GS-320 column was employed, nine peaks were separated with retention times ranging from 12.62 to 54.43 min using a mobile phase of acetonitrile: 1% acetic acid (25:75, vol/vol) at a flow rate of 2.0 ml/min. Correlation coefficients of standard curves for individual sulfonamides were linear (>0.99) with recoveries ranging from 25.2 ± 8.6% to 64.1 ± 8.6% for a concentration range of 1.0–25 μg/ml.

2013 ◽  
Vol 8 ◽  
pp. ACI.S12349 ◽  
Author(s):  
Ola Mohamed El-Houssini

Two simple, accurate and reproducible methods were developed and validated for the simultaneous determination of paracetamol (PARA) and pamabrom (PAMB) in pure form and in tablets. The first method was based on reserved-phase high-performance liquid chromatography, on a Thermo Hypersil ODS column using methanol:0.01 M sodium hexane sulfonate:formic acid (67.5:212.5:1 v/v/v) as the mobile phase. The flow rate was 2 mL/min and the column temperature was adjusted to 35 °C. Quantification was achieved with UV detection at 277 nm over concentration range of 100-600 and 4-24 μg/mL, with mean percentage recoveries were found to be 99.90 ± 0.586 and 99.26 ± 0.901 for PARA and PAMB, respectively. The second method was based on thin-layer chromatography separation of PARA and PAMB followed by densitometric measurement of the spots at 254 nm and 277 nm for PARA and PAMB respectively. Separation was carried out on aluminum sheet of silica gel 60F254 using dichloromethane:methanol:glacial acetic acid (7.5:1:0.5 v/v/v) as the mobile phase over concentration range of 1-10 and 0.32-3.20 μg per spot, with mean percentage recovery of 100.52 ± 1.332 and 99.71 ± 1.478 for PARA and PAMB, respectively. The methods retained their accuracy in presence of up to 50% of P-aminophenol and could be successfully applied in tablets.


Author(s):  
Baitha Maggadani ◽  
Harmita Harmita ◽  
Yahdiana Harahap ◽  
Hanna Hutabalian

Objective: The objective of this study was to obtain a simple and selective analysis method for determination of hydroquinone, tretinoin and betamethasone in whitening creams using reversed phase high-performance liquid chromatography (HPLC). Methods: Reverse Phase HPLC was used for method development, validation studies, and sample analysis. The method was optimized by evaluating several parameters that affects extraction of the sample, composition and types of mobile phase and also flow rate. Chromatographic separation was optimized on a C18 column [Sunfire, 250 x 4.6 mm, 5µm] utilizing a mobile phase consisting acetonitrile, methanol (90:10 v/v) and slightly addition of glacial acetic acid to reach pH 5in the ratio of 30: 50:20 v/v at a flow rate of 0.8 ml/min with UV detection at 270 nm and 350 nm. Results: The analytical methods fulfilled the validation requirements including accuracy, precision, linearity, selectivity, detection limits, and quantitation limits. The results showed the mean levels of hydroquinone, tretinoin and betamethasone in samples A and B were 1.78%; 0.07%; 0.12% and 2.00%; 0.07%; 0.13% respectively. Conclusion: The method was successfully applied for the determination of cosmetic formulation containing hydroquinone, tretinoin and betamethasone simultaneously. There were seven samples analyzed and two samples were positive containing hydroquinone, tretinoin, and betamethasone.


2017 ◽  
Vol 4 (1) ◽  
pp. 32-42 ◽  
Author(s):  
Assefa Takele ◽  
Abdel-Maaboud I. Mohamed Attaya ◽  
Ariaya Hymete ◽  
Melisew Tadele Alula

Introduction: Bromazepam is hydrolyzed in acidic aqueous solution leading to a series of degradation products. The rate of acidic hydrolysis is believed to be dependent on the state of protonation of the pyridyl and azomethine nitrogen atoms. Stability test is important in pharmaceutical industry to provide evidence on how the quality of an active substance or pharmaceutical product varies with time under the influence of a variety of environmental factors. Objective: The aim of the study was to develop a simple stability indicating method for the determination of bromazepam. Method: Bromazepam solution was prepared and forced degradation of bromazepam was performed under acid hydrolysis using sulphuric acid. High performance liquid chromatography determination of pure and degraded bromazepam and bromazepam-copper (II) complex was performed using reversed phase octyl C-8 column under isocratic conditions and the chromatographic conditions were set as follows; the flow rate of the mobile phase was 1.5 mL/min; injection volume was 10 μL, column temperature was 30oC and the detector wavelength being 309 nm. Results: Bromazepam, its degradation product and bromazepam chelated with copper (II) were determined using the developed mobile phase with flow rate of 1.5 mL/min. Good separation with sharp peak, minimum tailing and retention time repeatability was obtained. The rate order, rate constant and half-life of degradation were also determined, and it was observed that the degradation reaction follows the first order kinetics. Conclusion: Chromatographic separation of bromazepam chelated with copper (II) was achieved and the method can be further used in drug manufacturing quality control.


1994 ◽  
Vol 59 (3) ◽  
pp. 569-574 ◽  
Author(s):  
Josef Královský ◽  
Marta Kalhousová ◽  
Petr Šlosar

The reversed-phase high-performance liquid chromatography of some selected, industrially important aromatic sulfones has been investigated. The chromatographic behaviour of three groups of aromatic sulfones has been studied. The optimum conditions of separation and UV spectra of the sulfones and some of their hydroxy and benzyloxy derivatives are presented. The dependences of capacity factors vs methanol content in mobile phase are mentioned. The results obtained have been applied to the quantitative analysis of different technical-grade samples and isomer mixtures. For all the separation methods mentioned the concentration ranges of linear calibration curves have been determined.


1977 ◽  
Vol 23 (12) ◽  
pp. 2288-2291 ◽  
Author(s):  
P H Culbreth ◽  
I W Duncan ◽  
C A Burtis

Abstract We used paired-ion high-performance liquid chromatography to determine the 4-nitrophenol content of 4-nitrophenyl phosphate, a substrate for alkaline phosphatase analysis. This was done on a reversed-phase column with a mobile phase of methanol/water, 45/55 by vol, containing 3 ml of tetrabutylammonium phosphate reagent per 200 ml of solvent. At a flow rate of 1 ml/min, 4-nitrophenol was eluted at 9 min and monitored at 404 nm; 4-nitrophenyl phosphate was eluted at 5 min and could be monitored at 311 nm. Samples of 4-nitrophenyl phosphate obtained from several sources contained 0.3 to 7.8 mole of 4-nitrophenol per mole of 4-nitrophenyl phosphate.


2021 ◽  
Vol 66 (3) ◽  
pp. 172-176
Author(s):  
Lyubov Borisovna Kalikova ◽  
E. R. Boyko

Adenine nucleotides (ATP, ADP and AMP) play a central role in the regulation of metabolism and energy: they provide the energy balance of the cell, determine its redox state, act as allosteric effectors of a number of enzymes, modulate signaling and transcription factors and activate oxidation or biosynthesis substrates. A large number of methods have been developed to determine the level of ATP, ADP and AMP, but the most universal and effective method for the separation and analysis of complex mixtures is the reversed-phase high-performance liquid chromatography method (RP-HPLC). The aim of this study is to determine the optimal conditions for the qualitative separation and quantitative determination of standard solutions of ATP (1 mmol/l), ADP (0,5 mmol/l) and AMP (0,1 mmol/l) by RP-HPLC. The degree of separation of adenine nucleotides was estimated by the time of peak output in the chromatogram. To achieve the goal, the following tasks were set: assess the effect of the temperature of the analysis on the separation and change of the release time of the analytes in the chromatogram; determine the most optimal composition of the mobile phase for the separation of ATP, ADP and AMP in the chromatogram (the content of the organic solvent in the solution); to identify the effect of pH of the mobile phase on the separation of standard solutions of adenine nucleotides; set the optimal molarity of the mobile phase for the separation of ATP, ADP and AMP in the chromatogram. It was found that the temperature of the analysis does not affect the quality of peak separation, while the composition and pH of the mobile phase have a significant effect on the complete and clear separation of the studied nucleotides in the chromatogram. It was determined that the analysis temperature of 37°C and the mobile phase of 0.05 M KH2PO4 (pH 6.0) are optimal for separating the peaks of adenine nucleotides.


Author(s):  
Muhammad Fawad Rasool ◽  
Umbreen Fatima Qureshi ◽  
Nazar Muhammad Ranjha ◽  
Imran Imran ◽  
Mouqadus Un Nisa ◽  
...  

AbstractTh accurate rapid, simple and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of captopril (CAP). Chromatographic separation was accomplished using prepacked ODSI C18 column (250 mm × 4.6 mm with 5 μm particle size) in isocratic mode, with mobile phase consisting of water: acetonitrile (60:40 v/v), pH adjusted to 2.5 by using 85% orthophosphoric acid at a flow rate of 1 mL/min and UV detection was performed at 203 nm. RP-HPLC method used for the analysis of CAP in mobile phase and rabbit plasma was established and validated as per ICH-guidelines. It was carried out on a well-defined chromatographic peak of CAP was established with a retention time of 4.9 min and tailing factor of 1.871. The liquid–liquid extraction method was used for extraction of CAP from the plasma. Excellent linearity (R2 = 0.999) was shown over range 3.125–100 µg/mL with mean percentage recoveries ranges from 97 to 100.6%. Parameters of precision and accuracy of the developed method meet the established criteria. Intra and inter-day precision (% relative standard deviation) study was also performed which was less than 2% which indicate good reproducibility of the method. The limit of detection (LOD) and quantification for the CAP in plasma were 3.10 and 9.13 ng/mL respectively. The method was suitably validated and successfully applied to the determination of CAP in rabbit plasma samples.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (07) ◽  
pp. 14-21
Author(s):  
S. Sahu ◽  
◽  
R.M Singh ◽  
S.C. Mathur ◽  
D. K Sharma ◽  
...  

A simple, fast, precise and accurate ultra high performance liquid chromatography method was developed for degradation study of eletriptan hydrobromide (EH) under exaggerated conditions. An Inertsil ODS C18 (250 x 4.6 mm, 5µm) column in isocratic mode was used with mobile phase comprising of water, methanol and trifluoroacetic acid mixed in the ratio 55:45:0.1 % V/V/V, maintained at pH 3.5. The flow rate was set at 0.4 mL per minute with UV detection at 225 nm. The retention time of EH was found to be 3.7 minutes. Linearity for EH was found in the range of 3.5- 200 µg per mL and percentage recoveries were obtained in the range of 100.2 % to 100.6 %. The method was capable of resolving all degradants and principle component in sample. The proposed method is accurate, precise, selective, reproducible, and rapid for detection of degradation of eletriptan hydrobromide.


Sign in / Sign up

Export Citation Format

Share Document