A PCR Assay for Detection of Acetic Acid–Tolerant Lactic Acid Bacteria in Acidic Food Products

2004 ◽  
Vol 67 (3) ◽  
pp. 610-615 ◽  
Author(s):  
SHIGERU NAKANO ◽  
ATSUSHI MATSUMURA ◽  
TOSHIHIRO YAMADA

A PCR assay for the detection of acetic acid–tolerant lactic acid bacteria in the genera of Lactobacillus and Pediococcus was developed in this study. Primers targeting the bacterial 16S rRNA gene were newly designed and used in this PCR assay. To determine the specificity of the assay, 56 different bacterial strains (of 33 genera), 2 fungi, 3 animals, and 4 plants were tested. Results were positive for most tested bacterial members of 16S rRNA gene–based phylogenetic groups (classi ed in the Lactobacillus casei and Pediococcus group), including Lactobacillus fructivorans, Lactobacillus brevis, Lactobacillus buchneri, Lactobacillus plantarum, and Lactobacillus paracasei. For all other bacterial strains and eukaryote tested, results were negative. Bacterial DNA for PCR was prepared with a simple procedure with the use of Chelex 100 resin from culture after growth in deMan Rogosa Sharpe broth (pH 6.0). To test this PCR assay for the monitoring of the acetic acid–tolerant lactic acid bacteria, L. fructivorans was inoculated into several acidic food as an indicator. Before the PCR, the inoculation of 10 to 50 CFU of bacteria per g of food was followed by a 28-h enrichment culture step, and the PCR assay allowed the detection of bacterial cells. Including the enrichment culture step, the entire PCR detection process can be completed within 30 h.

2014 ◽  
Vol 80 (7) ◽  
pp. 2050-2061 ◽  
Author(s):  
Margherita Cruciata ◽  
Ciro Sannino ◽  
Danilo Ercolini ◽  
Maria L. Scatassa ◽  
Francesca De Filippis ◽  
...  

ABSTRACTThe microbial composition of artisan and industrial animal rennet pastes was studied by using both culture-dependent and -independent approaches. Pyrosequencing targeting the 16S rRNA gene allowed to identify 361 operational taxonomic units (OTUs) to the genus/species level. Among lactic acid bacteria (LAB),Streptococcus thermophilusand some lactobacilli, mainlyLactobacillus crispatusandLactobacillus reuteri, were the most abundant species, with differences among the samples. Twelve groups of microorganisms were targeted by viable plate counts revealing a dominance of mesophilic cocci. All rennets were able to acidify ultrahigh-temperature-processed (UHT) milk as shown by pH and total titratable acidity (TTA). Presumptive LAB isolated at the highest dilutions of acidified milks were phenotypically characterized, grouped, differentiated at the strain level by randomly amplified polymorphic DNA (RAPD)-PCR analysis, and subjected to 16S rRNA gene sequencing. Only 18 strains were clearly identified at the species level, asEnterococcus casseliflavus,Enterococcus faecium,Enterococcus faecalis,Enterococcus lactis,Lactobacillus delbrueckii, andStreptococcus thermophilus, while the other strains, all belonging to the genusEnterococcus, could not be allotted into any previously described species. The phylogenetic analysis showed that these strains might represent different unknown species. All strains were evaluated for their dairy technological performances. All isolates produced diacetyl, and 10 of them produced a rapid pH drop in milk, but only 3 isolates were also autolytic. This work showed that animal rennet pastes can be sources of LAB, mainly enterococci, that might contribute to the microbial diversity associated with dairy productions.


2020 ◽  
Vol 21 (3) ◽  
Author(s):  
FADILLA SAPALINA ◽  
Endah Retnaningrum

Biofilm is a community of microorganisms that interrelated and covered by an extracellular polymer matrix. This biofilm can be produced by Lactic acid bacteria (LAB) which was edible for human and animal.  Therefore, it possible to be applied in the food and health industry. One source of LAB is kimchi, as fermented food from Korea and it has good benefits for health. This research aimed to obtain LAB from kimchi that can produce edible biofilms and to identify LAB producing edible biofilms based on the 16S rRNA gene. Isolation of lactic acid bacteria from kimchi cultured in MRS agar medium containing 1% CaCO3, biofilm production test with biofilm assay method and zeolite as a substrate to adherent cells. For amplification of 16S rRNA gene used primer 27F and 1492R. The isolate of KA2, KA5, KB1, and KC4 isolated from kimchi and could produce biofilms with the highest biofilm formation at 48 hours incubation time. Based on molecular identification with 16S rRNA gene sequencing, the four isolates identified as Lactobacillus brevis species.


2011 ◽  
Vol 61 (6) ◽  
pp. 1356-1359 ◽  
Author(s):  
Shinji Kawasaki ◽  
Kana Kurosawa ◽  
Madoka Miyazaki ◽  
Chisato Yagi ◽  
Yoritaka Kitajima ◽  
...  

Five strains (Ryu1-2T, Gon2-9, Ryu4-3, Nog8-1 and Aza1-1) of lactic acid bacteria were isolated from flowers in mountainous areas in Japan, Oze National Park, Iizuna mountain and the Nikko area. The five isolates were found to share almost identical (99.6–100 % similar) 16S rRNA gene sequences and were therefore deemed to belong to the same species. These isolates exhibited low levels of 16S rRNA gene sequence similarity to known lactic acid bacteria; the closest recognized relatives to strain Ryu1-2T were the type strains of Lactobacillus hilgardii (92.8 % similarity), Lactobacillus kefiri (92.7 %), Lactobacillus composti (92.6 %) and Lactobacillus buchneri (92.4 %). Comparative analyses of rpoA and pheS gene sequences demonstrated that the novel isolates did not show significant relationships to other Lactobacillus species. The strains were Gram-stain-positive, catalase-negative and homofermentative. The isolates utilized a narrow range of carbohydrates as sources of carbon and energy, including glucose and fructose. On the basis of phenotypic characteristics and phylogenetic data, these isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus floricola sp. nov. is proposed. The type strain is Ryu1-2T ( = NRIC 0774T  = JCM 16512T  = DSM 23037T).


F1000Research ◽  
2019 ◽  
Vol 7 ◽  
pp. 1663
Author(s):  
Lili Anggraini ◽  
Yetti Marlida ◽  
Wizna Wizna ◽  
Jamsari Jamsari ◽  
Mirzah Mirzah ◽  
...  

Background: Dadih (fermented buffalo milk) is a traditional Indonesian food originating from West Sumatra province. The fermentation process is carried out by lactic acid bacteria (LAB), which are naturally present in buffalo milk.  Lactic acid bacteria have been reported as one of potential producers of γ-aminobutyric acid (GABA). GABA acts as a neurotransmitter inhibitor of the central nervous system. Methods: In this study, molecular identification and phylogenetic analysis of GABA producing LAB isolated from indigenous dadih of West Sumatera were determined. Identification of the GABA-producing LAB DS15 was based on conventional polymerase chain reaction. 16S rRNA gene sequence analysis was used to identify LAB DS15. Results: PCR of the 16S rRNA gene sequence of LAB DS15 gave an approximately 1400 bp amplicon.  Phylogenetic analysis showed that LAB DS15 was Pediococcus acidilactici, with high similarity of 99% at 100% query coverage to Pediococcus acidilactici strain DSM 20284. Conclusions: It can be concluded that GABA producing LAB isolated from indigenous dadih was Pediococcus acidilactici.


Sign in / Sign up

Export Citation Format

Share Document