A Simple Method for the Direct Detection of Salmonella and Escherichia coli O157:H7 from Raw Alfalfa Sprouts and Spent Irrigation Water Using PCR†‡

2005 ◽  
Vol 68 (11) ◽  
pp. 2256-2263 ◽  
Author(s):  
LYNETTE M. JOHNSTON ◽  
DRISS ELHANAFI ◽  
MARYANNE DRAKE ◽  
LEE-ANN JAYKUS

The U.S. Food and Drug Administration recognizes that raw seed sprouts are an important cause of foodborne disease and is now recommending that either spent irrigation water or final product be screened for Salmonella and Escherichia coli O157:H7 as a means of assuring the safety of product intended for consumption. In an effort to streamline such testing efforts, a simple method to preconcentrate pathogens from sprouts and spent irrigation water was investigated to facilitate the direct (without prior cultural enrichment) detection of pathogens using the PCR technique. Alfalfa sprouts and spent irrigation water were seeded with Salmonella enterica serovar Typhimurium and E. coli O157:H7 at 10−1 to 106 CFU/g or CFU/ml, respectively. Samples were blended (sprouts only) and then centrifuged at high speed to sediment the total bacterial population. The precipitate was processed for DNA isolation, PCR amplification, and amplicon confirmation by Southern hybridization. Mean pathogen recoveries after centrifugation ranged from 96 to 99% for both pathogens in both matrices. Using primers targeting the invA gene for Salmonella Typhimurium and the stx genes of E. coli O157:H7, it was possible to detect both pathogens in alfalfa sprouts at seeding concentrations as low as 10 CFU/g. PCR detection limits for both pathogens from spent irrigation water were 10−1 CFU/ml, the equivalent of 100 CFU/liter of water. Because spent irrigation water is constitutionally simple, it is particularly well suited for bacterial concentration by simple centrifugation steps. In this study, progress was made toward development of a rapid, inexpensive, and sensitive method for the detection of sprout-associated pathogens that is relevant to current industrial practices and needs.

2010 ◽  
Vol 73 (6) ◽  
pp. 1023-1029 ◽  
Author(s):  
MARILYN C. ERICKSON ◽  
CATHY C. WEBB ◽  
JUAN CARLOS DIAZ-PEREZ ◽  
SHARAD C. PHATAK ◽  
JOHN J. SILVOY ◽  
...  

Numerous field studies have revealed that irrigation water can contaminate the surface of plants; however, the occurrence of pathogen internalization is unclear. This study was conducted to determine the sites of Escherichia coli O157:H7 contamination and its survival when the bacteria were applied through spray irrigation water to either field-grown spinach or lettuce. To differentiate internalized and surface populations, leaves were treated with a surface disinfectant wash before the tissue was ground for analysis of E. coli O157:H7 by direct plate count or enrichment culture. Irrigation water containing E. coli O157:H7 at 102, 104, or 106 CFU/ml was applied to spinach 48 and 69 days after transplantation of seedlings into fields. E. coli O157:H7 was initially detected after application on the surface of plants dosed at 104 CFU/ml (4 of 20 samples) and both on the surface (17 of 20 samples) and internally (5 of 20 samples) of plants dosed at 106 CFU/ml. Seven days postspraying, all spinach leaves tested negative for surface or internal contamination. In a subsequent study, irrigation water containing E. coli O157:H7 at 108 CFU/ml was sprayed onto either the abaxial (lower) or adaxial (upper) side of leaves of field-grown lettuce under sunny or shaded conditions. E. coli O157:H7 was detectable on the leaf surface 27 days postspraying, but survival was higher on leaves sprayed on the abaxial side than on leaves sprayed on the adaxial side. Internalization of E. coli O157:H7 into lettuce leaves also occurred with greater persistence in leaves sprayed on the abaxial side (up to 14 days) than in leaves sprayed on the adaxial side (2 days).


2001 ◽  
Vol 64 (6) ◽  
pp. 802-806 ◽  
Author(s):  
T. FU ◽  
D. STEWART ◽  
K. REINEKE ◽  
J. ULASZEK ◽  
J. SCHLESSER ◽  
...  

Numerous outbreaks of foodborne illness have been linked to the consumption of raw sprouts. Sprout producers have been advised by the Food and Drug Administration to include microbiological testing of spent irrigation water during production as part of an overall strategy to enhance the safety of sprouts. Alfalfa sprouts and irrigation water were analyzed to show the feasibility of using irrigation water for monitoring the microbiological safety of sprouts. Sprouts and water were produced and harvested from both commercial-scale (rotary drum) and consumer-scale (glass jars) equipment. Rapid increases of aerobic mesophiles occurred during the first 24 h of sprouting, with maximum levels achieved after 48 to 72 h. The counts in irrigation water were on average within approximately 1 log of their respective counts in the sprouts. Similar results were obtained for analysis of Escherichia coli O157:H7 in irrigation water and sprouts grown from artificially inoculated seeds. Testing of spent irrigation water indicated the contamination status of alfalfa sprouts grown from seeds associated with outbreaks of Salmonella infection.


Author(s):  
A. Amiri ◽  
H. Zandi ◽  
H. Mozaffari Khosravi

Background: Electron beam irradiation is one of the effective ways to control foodborne pathogens. We evaluated the effect of electron beam irradiation on survival of Escherichia coli O157:H7 and Salmonella enterica serovar Thyphimurium in minced camel meat during refrigerated storage. Methods: The meat samples were inoculated with E. coli O157:H7 and S. enterica serovar Thyphimurium and then irradiated with doses of 0, 1, 2, 3, and 5 kGy. The samples were stored at 4±1 °C and evaluated microbiologically up to 10 days. Data were analyzed using SPSS software version 18. Results: The microbial loads of minced camel meat samples were significantly reduced (p<0.0001) with increasing the dose of irradiation. The most effective dose was 5 kGy that highly reduced S. enterica serovar Typhimurium, and completely destroyed E. coli O157:H7. However, E. coli O157:H7 was more sensitive to electron beam irradiation than S. enterica serovar Typhimurium. Conclusion: Electron beam irradiation effectively reduced the population of both E. coli O157:H7 and S. enterica serovar Typhimurium in minced camel meat in a dose dependent manner.


2007 ◽  
Vol 70 (4) ◽  
pp. 841-850 ◽  
Author(s):  
JOSH R. BRANEN ◽  
MARTHA J. HASS ◽  
ERIN R. DOUTHIT ◽  
WUSI C. MAKI ◽  
A. LARRY BRANEN

Enzymatic bio-nanotransduction is a biological detection scheme based on the production of nucleic acid nano-signals (RNA) in response to specific biological recognition events. In this study, we applied an enzymatic bio-nanotransduction system to the detection of important food-related pathogens and a toxin. Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and staphylococcal enterotoxin B (SEB) were chosen because of the implications of these targets to food safety. Primary antibodies to each of the targets were used to functionalize magnetic beads and produce biological recognition elements (antibodies) conjugated to nano-signal–producing DNA templates. Immunomagnetic capture that was followed by in vitro transcription of DNA templates bound to target molecules produced RNA nano-signals specific for every target in the sample. Discrimination of RNA nano-signals with a standard enzyme-linked oligonucleotide fluorescence assay provided a correlation between nano-signal profiles and target concentrations. The estimated limit of detection was 2.4 × 103 CFU/ml for E. coli O157:H7, 1.9 × 104 CFU/ml for S. enterica serovar Typhimurium, and 0.11 ng/ml for SEB with multianalyte detection in buffer. Low levels of one target were also detected in the presence of interference from high levels of the other targets. Finally, targets were detected in milk, and detection was improved for E. coli O157 by heat treatment of the milk.


2010 ◽  
Vol 73 (3) ◽  
pp. 500-506 ◽  
Author(s):  
MARILYN C. ERICKSON ◽  
CATHY C. WEBB ◽  
JUAN CARLOS DIAZ-PEREZ ◽  
SHARAD C. PHATAK ◽  
JOHN J. SILVOY ◽  
...  

Several sources of contamination of fresh produce by Escherichia coli O157:H7 (O157) have been identified and include contaminated irrigation water and improperly composted animal waste; however, field studies evaluating the potential for internalization of O157 into leafy greens from these sources have not been conducted. Irrigation water inoculated with green fluorescent plasmid–labeled Shiga toxin–negative strains (50 ml of 102, 104, or 106 CFU of O157 per ml) was applied to soil at the base of spinach plants of different maturities in one field trial. In a second trial, contaminated compost (1.8 kg of 103 or 105 CFU of O157 per g) was applied to field plots (0.25 by 3.0 m) prior to transplantation of spinach, lettuce, or parsley plants. E. coli O157:H7 persisted in the soil up to harvest (day 76 posttransplantation) following application of contaminated irrigation water; however, internalized O157 was not detected in any spinach leaves or in roots exposed to O157 during the early or late growing season. Internalized O157 was detected in root samples collected 7 days after plants were contaminated in mid-season, with 5 of 30 samples testing positive for O157 by enrichment; however, O157 was not detected by enrichment in surface-disinfected roots on days 14 or 22. Roots and leaves from transplanted spinach, lettuce, and parsley did not internalize O157 for up to 50 days in the second trial. These results indicate that internalization of O157 via plant roots in the field is rare and when it does occur, O157 does not persist 7 days later.


2004 ◽  
Vol 67 (7) ◽  
pp. 1365-1370 ◽  
Author(s):  
MAHBUB ISLAM ◽  
MICHAEL P. DOYLE ◽  
SHARAD C. PHATAK ◽  
PATRICIA MILLNER ◽  
XIUPING JIANG

Outbreaks of enterohemorrhagic Escherichia coli O157:H7 infections associated with lettuce and other leaf crops have occurred with increasing frequency in recent years. Contaminated manure and polluted irrigation water are probable vehicles for the pathogen in many outbreaks. In this study, the occurrence and persistence of E. coli O157:H7 in soil fertilized with contaminated poultry or bovine manure composts or treated with contaminated irrigation water and on lettuce and parsley grown on these soils under natural environmental conditions was determined. Twenty-five plots, each 1.8 by 4.6 m, were used for each crop, with five treatments (one without compost, three with each of the three composts, and one without compost but treated with contaminated water) and five replication plots for each treatment. Three different types of compost, PM-5 (poultry manure compost), 338 (dairy manure compost), and NVIRO-4 (alkaline-stabilized dairy manure compost), and irrigation water were inoculated with an avirulent strain of E. coli O157:H7. Pathogen concentrations were 107 CFU/g of compost and 105 CFU/ml of water. Contaminated compost was applied to soil in the field as a strip at 4.5 metric tons per hectare on the day before lettuce and parsley seedlings were transplanted in late October 2002. Contaminated irrigation water was applied only once on the plants as a treatment in five plots for each crop at the rate of 2 liters per plot 3 weeks after the seedlings were transplanted. E. coli O157:H7 persisted for 154 to 217 days in soils amended with contaminated composts and was detected on lettuce and parsley for up to 77 and 177 days, respectively, after seedlings were planted. Very little difference was observed in E. coli O157:H7 persistence based on compost type alone. E. coli O157:H7 persisted longer (by &gt;60 days) in soil covered with parsley plants than in soil from lettuce plots, which were bare after lettuce was harvested. In all cases, E. coli O157:H7 in soil, regardless of source or crop type, persisted for &gt;5 months after application of contaminated compost or irrigation water.


2002 ◽  
Vol 68 (6) ◽  
pp. 3114-3120 ◽  
Author(s):  
A. O. Charkowski ◽  
J. D. Barak ◽  
C. Z. Sarreal ◽  
R. E. Mandrell

ABSTRACT Sprout producers have recently been faced with several Salmonella enterica and Escherichia coli O157:H7 outbreaks. Many of the outbreaks have been traced to sprout seeds contaminated with low levels of human pathogens. Alfalfa seeds were inoculated with S. enterica and E. coli O157:H7 strains isolated from alfalfa seeds or other environmental sources and sprouted to examine growth of these human pathogens in association with sprouting seeds. S. enterica strains grew an average of 3.7 log10 on sprouting seeds over 2 days, while E. coli O157:H7 strains grew significantly less, an average of 2.3 log10. The initial S. enterica or E. coli O157:H7 inoculum dose and seed-sprouting temperature significantly affected the levels of both S. enterica and E. coli O157:H7 on the sprouts and in the irrigation water, while the frequency of irrigation water replacement affected only the levels of E. coli O157:H7. Colonization of sprouting alfalfa seeds by S. enterica serovar Newport and E. coli O157:H7 strains transformed with a plasmid encoding the green fluorescent protein was examined with fluorescence microscopy. Salmonella serovar Newport colonized both seed coats and sprout roots as aggregates, while E. coli O157:H7 colonized only sprout roots.


2007 ◽  
Vol 70 (12) ◽  
pp. 2717-2724 ◽  
Author(s):  
SUNEE HIMATHONGKHAM ◽  
MARY LEE DODD ◽  
JENNY K. YEE ◽  
DAVID K. LAU ◽  
RAYMOND G. BRYANT ◽  
...  

The objective of this study was to develop a rapid, simple method for enhanced detection and isolation of low levels of Escherichia coli O157:H7 from leafy produce and surface water using recirculating immunomagnetic separation (RIMS) coupled with real-time PCR and a standard culture method. The optimal enrichment conditions for the method also were determined. Analysis of real-time PCR data (CT values) suggested that incubation of lettuce and spinach leaves rather than rinsates provides better enrichment of E. coli O157:H7. Enrichment of lettuce or spinach leaves at 42°C for 5 h provided better detection than enrichment at 37°C. Extended incubation of surface water for 20 h at 42°C did not improve the detection. The optimized enrichment conditions were also employed with modified Moore swabs, which were used to sample flowing water sites. Positive isolation rates and real-time PCR results indicated an increased recovery of E. coli O157:H7 from all samples following the application of RIMS. Under these conditions, the method provided detection and/or isolation of E. coli O157:H7 at levels as low as 0.07 CFU/g of lettuce, 0.1 CFU/g of spinach, 6 CFU/100 ml of surface water, and 9 CFU per modified Moore swab. During a 6-month field study, modified Moore swabs yielded high isolation rates when deployed in natural watershed sites. The method used in this study was effective for monitoring E. coli O157:H7 in the farm environment, during postharvest processing, and in foodborne outbreak investigations.


2015 ◽  
Vol 78 (3) ◽  
pp. 518-524 ◽  
Author(s):  
BISMARCK MARTINEZ ◽  
JAYNE STRATTON ◽  
ANDRÉIA BIANCHINI ◽  
STEPHEN WEGULO ◽  
GLEN WEAVER

Escherichia coli O157:H7 is a human pathogen that can cause bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. E. coli O157:H7 illnesses are mainly associated with undercooked beef; however, in recent years, outbreaks have been linked to fresh produce, such as spinach, lettuce, and sprouts. In 2009, flour was implicated as the contamination source in an outbreak involving consumption of raw cookie dough that resulted in 77 illnesses. The objectives of this research were to determine (i) whether E. coli O157:H7 could be translocated into the internal tissues of wheat (Triticum aestivum) seedlings from contaminated seed, soil, or irrigation water and (ii) whether the bacterium could survive on flowering wheat heads. The levels of contamination of kanamycin-resistant E. coli O157:H7 strains in seed, soil, and irrigation water were 6.88 log CFU/g, 6.60 log CFU/g, and 6.76 log CFU/ml, respectively. One hundred plants per treatment were sown in pot trays with 50 g of autoclaved soil or purposely contaminated soil, watered every day with 5 ml of water, and harvested 9 days postinoculation. In a fourth experiment, flowering wheat heads were spray inoculated with water containing 4.19 log CFU/ml E. coli O157:H7 and analyzed for survival after 15 days, near the harvest period. To detect low levels of internalization, enrichment procedures were performed and Biotecon real-time PCR detection assays were used to determine the presence of E. coli O157:H7 in the wheat, using a Roche Applied Science LightCycler 2.0 instrument. The results showed that internalization was possible using contaminated seed, soil, and irrigation water in wheat seedlings, with internalization rates of 2, 5, and 10%, respectively. Even though the rates were low, to our knowledge this is the first study to demonstrate the ability of this strain to reach the phylloplane in wheat. In the head contamination experiment, all samples tested positive, showing the ability of E. coli O157:H7 to survive on the wheat head.


Sign in / Sign up

Export Citation Format

Share Document