Sustained Decrease in the Rate of Escherichia coli O157:H7–Positive Raw Ground Beef Samples Tested by the Food Safety and Inspection Service

2006 ◽  
Vol 69 (3) ◽  
pp. 480-481 ◽  
Author(s):  
Alecia Larew Naugle ◽  
Kristin G. Holt ◽  
Priscilla Levine ◽  
Ron Eckel
2005 ◽  
Vol 68 (3) ◽  
pp. 462-468 ◽  
Author(s):  
ALECIA LAREW NAUGLE ◽  
KRISTIN G. HOLT ◽  
PRISCILLA LEVINE ◽  
RON ECKEL

We analyzed raw ground beef testing data to determine whether a decrease in the rate of Escherichia coli O157:H7–positive raw ground beef samples has occurred since the inception of Food Safety and Inspection Service (U.S. Department of Agriculture) regulatory actions and microbiological testing concerning this commodity and pathogen. A main effects log-linear Poisson regression model was constructed to evaluate the association between fiscal year and the rate of E. coli O157: H7–positive raw ground beef samples while controlling for the effect of season for the subset of test results obtained from fiscal year (FY)2000 through FY2003. Rate ratios were used to compare the rate of E. coli O157:H7–positive raw ground beef samples between sequential years to identify year-to-year differences. Of the 26,521 raw ground beef samples tested from FY2000 through FY2003, 189 (0.71%) tested positive for E. coli O157:H7. Year-to-year comparisons identified a 50% reduction in the rate of positive ground beef samples from FY2002 to FY2003 when controlling for season (95% CI, 10 to 72% decrease; P = 0.02). This decrease was the only significant year-to-year change in the rate of E. coli O157:H7–positive raw ground beef samples but was consistent in samples obtained from both federally inspected establishments and retail outlets. We believe this decrease is attributed to specific regulatory actions by Food Safety and Inspection Service and subsequent actions implemented by the industry, with the goal of reducing E. coli O157:H7 adulteration of raw ground beef. Continued monitoring is necessary to confirm that the decrease in the rate of E. coli O157:H7 in raw ground beef samples we observed here represents the beginning of a sustained trend.


2001 ◽  
Vol 84 (3) ◽  
pp. 752-760 ◽  
Author(s):  
Yvette M Henry ◽  
Nandini Natrajan ◽  
Wendy F Lauer

Abstract A method for detection of Escherichia coli O157 in beef and poultry is presented. The method is antibody-based and uses a patented antibody-specific metal-plating procedure for the detection of E. coli O157 in enriched meat samples. Both raw ground beef and raw ground poultry were tested as matrixes for the organism. The sensitivity and specificity of the assay were 98 and 90%, respectively. The accuracy of the assay was 96%. Overall, the method agreement between the E. coli O157 Detex assay and the U.S. Department of Agriculture/Food Safety Inspection Service method was 96%. Sample temperature upon loading of the apparatus was critical to the observed false-positive rate of the system.


2007 ◽  
Vol 70 (6) ◽  
pp. 1483-1488 ◽  
Author(s):  
ANDREA CURRIE ◽  
JUDY MACDONALD ◽  
ANDREA ELLIS ◽  
JENNIFER SIUSHANSIAN ◽  
LINDA CHUI ◽  
...  

The Calgary Health Region identified an outbreak of Escherichia coli O157:H7 infection in September 2004 following a fourfold increase in laboratory reports. Clinical isolates were indistinguishable by pulsed-field gel electrophoresis (PFGE), and the PFGE pattern was unique in North America. Most affected individuals reported beef donair consumption in 10-day food histories. We conducted a matched case-control study, inspected the implicated food premises, and conducted a traceback investigation of suspect ground beef to determine the source of the outbreak and implement prevention and control measures. A total of 43 laboratory-confirmed cases were identified, with symptom onsets between 8 September and 1 October 2004. Among 26 matched case-control pairs, consumption of beef donair from one of two locations of a local restaurant chain was the only statistically significant risk factor for infection (matched odds ratio undefined; P < 0.01). No samples of the implicated ground beef were available for microbiological testing. We identified several opportunities for time-temperature abuse and other factors that may have contributed to the serving of unsafe donair meat at the implicated restaurants. This outbreak highlighted gaps in food safety policy related to beef donair and similar products in Canada. Immediately following the outbreak, the Region implemented new safe food handling requirements and a Federal/Provincial/Territorial Working Group was established to make recommendations for national food safety policies specific to these products.


2015 ◽  
Vol 98 (5) ◽  
pp. 1301-1314 ◽  
Author(s):  
Jonathan Cloke ◽  
Erin Crowley ◽  
Patrick Bird ◽  
Ben Bastin ◽  
Jonathan Flannery ◽  
...  

Abstract The Thermo Scientific™ SureTect™ Escherichia coli O157:H7 Assay is a new real-time PCR assay which has been validated through the AOAC Research Institute (RI) Performance Tested MethodsSM program for raw beef and produce matrixes. This validation study specifically validated the assay with 375 g 1:4 and 1:5 ratios of raw ground beef and raw beef trim in comparison to the U.S. Department of Agriculture, Food Safety Inspection Service, Microbiology Laboratory Guidebook (USDS-FSIS/MLG) reference method and 25 g bagged spinach and fresh apple juice at a ratio of 1:10, in comparison to the reference method detailed in the International Organization for Standardization 16654:2001 reference method. For raw beef matrixes, the validation of both 1:4 and 1:5 allows user flexibility with the enrichment protocol, although which of these two ratios chosen by the laboratory should be based on specific test requirements. All matrixes were analyzed by Thermo Fisher Scientific, Microbiology Division, Vantaa, Finland, and Q Laboratories Inc, Cincinnati, Ohio, in the method developer study. Two of the matrixes (raw ground beef at both 1:4 and 1:5 ratios) and bagged spinach were additionally analyzed in the AOAC-RI controlled independent laboratory study, which was conducted by Marshfield Food Safety, Marshfield, Wisconsin. Using probability of detection statistical analysis, no significant difference was demonstrated by the SureTect kit in comparison to the USDA FSIS reference method for raw beef matrixes, or with the ISO reference method for matrixes of bagged spinach and apple juice. Inclusivity and exclusivity testing was conducted with 58 E. coli O157:H7 and 54 non-E. coli O157:H7 isolates, respectively, which demonstrated that the SureTect assay was able to detect all isolates of E. coli O157:H7 analyzed. In addition, all but one of the nontarget isolates were correctly interpreted as negative by the SureTect Software. The single isolate giving a positive result was an E. coli O157:NM isolate. Nonmotile isolates of E. coli O157 have been demonstrated to still contain the H7 gene; therefore, this result is not unexpected. Robustness testing was conducted to evaluate the performance of the SureTect assay with specific deviations to the assay protocol, which were outside the recommended parameters and which are open to variation. This study demonstrated that the SureTect assay gave reliable performance. A final study to verify the shelf life of the product, under accelerated conditions was also conducted.


2012 ◽  
Vol 75 (1) ◽  
pp. 48-61 ◽  
Author(s):  
KIMBERLY M. WIEGAND ◽  
STEVEN C. INGHAM ◽  
BARBARA H. INGHAM

Added salt, seasonings, and phosphates, along with slow- and/or low-temperature cooking impart desirable characteristics to whole-muscle beef, but might enhance Escherichia coli O157:H7 survival. We investigated the effects of added salt, seasoning, and phosphates on E. coli O157:H7 thermotolerance in ground beef, compared E. coli O157:H7 thermotolerance in seasoned roasts and ground beef, and evaluated ground beef–derived D- and z-values for predicting destruction of E. coli O157:H7 in whole-muscle beef cooking. Inoculated seasoned and unseasoned ground beef was heated at constant temperatures of 54.4, 60.0, and 65.5°C to determine D- and z-values, and E. coli O157:H7 survival was monitored in seasoned ground beef during simulated slow cooking. Inoculated, seasoned whole-muscle beef roasts were slow cooked in a commercial smokehouse, and experimentally determined lethality was compared with predicted process lethality. Adding 5% seasoning significantly decreased E. coli O157:H7 thermotolerance in ground beef at 54.4°C, but not at 60 or 65.5°C. Under nonisothermal conditions, E. coli O157:H7 thermotolerance was greater in seasoned whole-muscle beef than in seasoned ground beef. Meeting U.S. Government (U.S. Department of Agriculture, Food Safety and Inspection Service, 1999, Appendix A) whole-muscle beef cooking guidance, which targets Salmonella destruction, would not ensure ≥6.5-log CFU/g reduction of E. coli O157:H7 in ground beef systems, but generally ensured ≥6.5-log CFU/g reduction of this pathogen in seasoned whole-muscle beef. Calculations based on D- and z-values obtained from isothermal ground beef studies increasingly overestimated destruction of E. coli O157:H7 in commercially cooked whole-muscle beef as process severity increased, with a regression line equation of observed reduction = 0.299 (predicted reduction) + 1.4373.


1996 ◽  
Vol 59 (12) ◽  
pp. 1331-1335 ◽  
Author(s):  
ISABEL WALLS ◽  
VIRGINIA N. SCOTT

The growth of Escherichia coli O157:H7 in raw ground beef was investigated at 12°C, 20°C, and 35°C at pH 5.7 (unadjusted) and adjusted to pH 6.3 to 6.4. These growth data were fitted to the Gompertz equation and the resulting growth kinetics were compared with predictions from the U.S. Department of Agriculture Pathogen Modeling Program. Close agreement with the model was obtained at pH 5.7, but at pH 6.4, growth was more rapid than predicted. The U.S. Department of Agriculture Food Safety and Inspection Service has used this predictive model for developing proposed regulations on time-temperature requirements for carcass cooling. As there may be considerable differences in the microenvironment of raw ground beef and a beef carcass, the validity of using predictive models for estimating growth rates on a carcass should be determined by performing growth studies on carcass surfaces.


Food Control ◽  
2009 ◽  
Vol 20 (4) ◽  
pp. 357-361 ◽  
Author(s):  
Belgin Sarimehmetoglu ◽  
Mihriban Hatun Aksoy ◽  
Naim Deniz Ayaz ◽  
Yildiz Ayaz ◽  
Ozlem Kuplulu ◽  
...  

2006 ◽  
Vol 69 (8) ◽  
pp. 1978-1982 ◽  
Author(s):  
J. E. MANN ◽  
M. M. BRASHEARS

In order to provide beef processors with valuable data to validate critical limits set for temperature during grinding, a study was conducted to determine Escherichia coli O157:H7 growth at various temperatures in raw ground beef. Fresh ground beef samples were inoculated with a cocktail mixture of streptomycin-resistant E. coli O157:H7 to facilitate recovery in the presence of background flora. Samples were held at 4.4, 7.2, and 10°C, and at room temperature (22.2 to 23.3°C) to mimic typical processing and holding temperatures observed in meat processing environments. E. coli O157:H7 counts were determined by direct plating onto tryptic soy agar with streptomycin (1,000 μg/ml), at 2-h intervals over 12 h for samples held at room temperature. Samples held under refrigeration temperatures were sampled at 4, 8, 12, 24, 48, and 72 h. Less than one log of E. coli O157:H7 growth was observed at 48 h for samples held at 10°C. Samples held at 4.4 and 7.2°C showed less than one log of E. coli O157:H7 growth at 72 h. Samples held at room temperature showed no significant increase in E. coli O157:H7 counts for the first 6 h, but increased significantly afterwards. These results illustrate that meat processors can utilize a variety of time and temperature combinations as critical limits in their hazard analysis critical control point plans to minimize E. coli O157:H7 growth during the production and storage of ground beef.


Sign in / Sign up

Export Citation Format

Share Document