Detection of Escherichia coli O157:H7 in ground beef using immunomagnetic separation and multiplex PCR

Food Control ◽  
2009 ◽  
Vol 20 (4) ◽  
pp. 357-361 ◽  
Author(s):  
Belgin Sarimehmetoglu ◽  
Mihriban Hatun Aksoy ◽  
Naim Deniz Ayaz ◽  
Yildiz Ayaz ◽  
Ozlem Kuplulu ◽  
...  
2007 ◽  
Vol 70 (10) ◽  
pp. 2230-2234 ◽  
Author(s):  
T. W. THOMPSON ◽  
T. P. STEPHENS ◽  
G. H. LONERAGAN ◽  
M. F. MILLER ◽  
M. M. BRASHEARS

Rapid enzyme-linked immunosorbent assays (ELISAs) are approved for detection of Escherichia coli O157 in beef products. However, these kits have also been used in the industry to detect this pathogen on hides or in feces of cattle, although this use has not been validated. The objective of this study was to compare commercially available ELISAs (E. coli Now, Reveal, and VIP) with immunomagnetic separation along with selective media to detect E. coli O157 on hides, in feces, and in medium- and low-level-inoculated ground beef and carcasses (simulated by using briskets) samples. Naturally infected hide and fecal samples were subjected to both the immunomagnetic separation method and ELISAs for the detection of E. coli O157. Additionally, E. coli O157 inoculated and noninoculated ground beef and beef briskets were used to simulate meat and carcass samples. When comparing the detection results from the ELISAs (E. coli Now, Reveal, and VIP) to the immunomagnetic separation method, poor agreement was observed for fecal samples (kappa = 0.10, 0.02, and 0.03 for E. coli Now, Reveal, and VIP, respectively), and fair-to-moderate agreement was observed for hide samples (kappa = 0.30, 0.51, and 0.29 for E. coli Now, Reveal, and VIP, respectively). However, there was near-perfect agreement between the immunomagnetic separation method and ELISAs for ground beef (kappa = 1, 1, and 0.80 for E. coli Now, Reveal, and VIP, respectively) and brisket (kappa = 1, 1, and 1 for E. coli Now, Reveal, and VIP, respectively) samples. Assuming immunomagnetic separation is the best available method, these data suggest that the ELISAs are not useful in detecting E. coli O157 from hide or fecal samples. However, when ELISAs are used on ground beef and beef brisket samples they can be used with a high degree of confidence.


2000 ◽  
Vol 63 (8) ◽  
pp. 1032-1037 ◽  
Author(s):  
PINA M. FRATAMICO ◽  
LORI K. BAGI ◽  
TIZIANA PEPE

A multiplex polymerase chain reaction (PCR) assay was designed to simplify detection of Escherichia coli O157:H7 and to identify the H serogroup and the type of Shiga toxin produced by this bacterium. Primers for a plasmid-encoded hemolysin gene (hly933), and chromosomal flagella (fliCh7; flagellar structural gene of H7 serogroup), Shiga toxins (stx1, stx2), and attaching and effacing (eaeA) genes were used in a multiplex PCR for coamplification of the corresponding DNA sequences from enterohemorrhagic E. coli (EHEC) O157:H7. Enrichment cultures of ground beef, blue cheese, mussels, alfalfa sprouts, and bovine feces, artificially inoculated with various levels of E. coli O157:H7 strain 933, were subjected to a simple DNA extraction step prior to the PCR, and the resulting amplification products were analyzed by agarose gel electrophoresis. Sensitivity of the assay was ≤1 CFU/g of food or bovine feces (initial inoculum level), and results could be obtained within 24 h. Similar detection levels were obtained with ground beef samples that underwent enrichment culturing immediately after inoculation and samples that were frozen or refrigerated prior to enrichment. The multiplex PCR facilitates detection of E. coli O157:H7 and can reduce the time required for confirmation of isolates by up to 3 to 4 days.


2007 ◽  
Vol 70 (6) ◽  
pp. 1366-1372 ◽  
Author(s):  
LUXIN WANG ◽  
YONG LI ◽  
AZLIN MUSTAPHA

The objective of this study was to establish a multiplex real-time PCR for the simultaneous quantitation of Escherichia coli O157:H7, Salmonella, and Shigella. Genomic DNA for the real-time PCR was extracted by the boiling method. Three sets of primers and corresponding TaqMan probes were designed to target these three pathogenic bacteria. Multiplex real-time PCR was performed with TaqMan Universal PCR Master Mix in an ABI Prism 7700 Sequence Detection System. Final standard curves were calculated for each pathogen by plotting the threshold cycle value against the bacterial number (log CFU per milliliter) via linear regression. With optimized conditions, the quantitative detection range of the real-time multiplex PCR for pure cultures was 102 to 109 CFU/ml for E. coli O157:H7, 103 to 109 CFU/ml for Salmonella, and 101 to 108 CFU/ml for Shigella. When the established multiplex real-time PCR system was applied to artificially contaminated ground beef, the detection limit was 105 CFU/g for E. coli O157:H7, 103 CFU/g for Salmonella, and 104 CFU/g for Shigella. Immunomagnetic separation (IMS) was further used to separate E. coli O157:H7 and Salmonella from the beef samples. With the additional use of IMS, the detection limit was 103 CFU/g for both pathogens. Results from this study showed that TaqMan real-time PCR, combined with IMS, is potentially an effective method for the rapid and reliable quantitation of E. coli O157:H7, Salmonella, and Shigella in food.


2005 ◽  
Vol 68 (9) ◽  
pp. 1804-1811 ◽  
Author(s):  
MADHUKAR VARSHNEY ◽  
LIJU YANG ◽  
XIAO-LI SU ◽  
YANBIN LI

The immunomagnetic separation with magnetic nanoparticle-antibody conjugates (MNCs) was investigated and evaluated for the detection of Escherichia coli O157:H7 in ground beef samples. MNCs were prepared by immobilizing biotin-labeled polyclonal goat anti–E. coli antibodies onto streptavidin-coated magnetic nanoparticles. For bacterial separation, MNCs were mixed with inoculated ground beef samples, then nanoparticle-antibody–E. coli O157:H7 complexes were separated from food matrix with a magnet, washed, and surface plated for microbial enumeration. The capture efficiency was determined by plating cells bound to nanoparticles and unbound cells in the supernatant onto sorbitol MacConkey agar. Key parameters, including the amount of nanoparticles and immunoreaction time, were optimized with different concentrations of E. coli O157:H7 in phosphate-buffered saline. MNCs presented a minimum capture efficiency of 94% for E. coli O157:H7 ranging from 1.6 × 101 to 7.2 × 107 CFU/ml with an immunoreaction time of 15 min without any enrichment. Capture of E. coli O157:H7 by MNCs did not interfere with other bacteria, including Salmonella enteritidis, Citrobacter freundii, and Listeria monocytogenes. The capture efficiency values of MNCs increased from 69 to 94.5% as E. coli O157:H7 decreased from 3.4 × 107 to 8.0 × 100 CFU/ml in the ground beef samples prepared with minimal steps (without filtration and centrifugation). An enrichment of 6 h was done for 8.0 × 100 and 8.0 × 101 CFU/ml of E. coli O157:H7 in ground beef to increase the number of cells in the sample to a detectable level. The results also indicated that capture efficiencies of MNCs for E. coli O157:H7 with and without mechanical mixing during immunoreaction were not significantly different (P > 0.05). Compared with microbeads based immunomagnetic separation, the magnetic nanoparticles showed their advantages in terms of higher capture efficiency, no need for mechanical mixing, and minimal sample preparation.


2006 ◽  
Vol 69 (12) ◽  
pp. 2870-2874 ◽  
Author(s):  
XIANGWU NOU ◽  
TERRANCE M. ARTHUR ◽  
JOSEPH M. BOSILEVAC ◽  
DAYNA M. BRICHTA-HARHAY ◽  
MICHAEL N. GUERINI ◽  
...  

Conventional immunomagnetic separation (IMS) procedures, which use an external magnetic source to capture magnetic particles against the side of a test tube, are labor-intensive and can have poor sensitivity for the target organism because of high background microflora that is not effectively washed away during the IMS process. This report compares the conventional IMS procedure to a new IMS procedure with an intrasolution magnetic particle transfer device, the PickPen. The IMS target for the majority of these studies is Escherichia coli O157:H7 in various types of samples, including cattle feces, hides, carcasses, and ground beef. Comparison of the two IMS methods showed a significant difference (P < 0.05) in the efficiency of detecting E. coli O157:H7 from cattle carcass surface, cattle hide, and cattle fecal samples. No significant improvement (P > 0.05) in E. coli O157:H7 detection was observed when the PickPen IMS procedure was used to isolate this pathogen from ground beef samples. Use of the PickPen IMS greatly increases the throughput of the IMS procedure and may be more compatible with various emerging technologies for pathogen detection. In addition, the efficacy of sequential IMS for multiple pathogens is reported herein.


2005 ◽  
Vol 68 (8) ◽  
pp. 1566-1574 ◽  
Author(s):  
TERRANCE M. ARTHUR ◽  
JOSEPH M. BOSILEVAC ◽  
XIANGWU NOU ◽  
MOHAMMAD KOOHMARAIE

Currently, several beef processors employ test-and-hold systems for increased quality control of ground beef. In such programs, each lot of product must be tested and found negative for Escherichia coli O157:H7 prior to release of the product into commerce. Optimization of three testing attributes (detection time, specificity, and sensitivity) is critical to the success of such strategies. Because ground beef is a highly perishable product, the testing methodology used must be as rapid as possible. The test also must have a low false-positive result rate so product is not needlessly discarded. False-negative results cannot be tolerated because they would allow contaminated product to be released and potentially cause disease. In this study, two culture-based and three PCR-based methods for detecting E. coli O157:H7 in ground beef were compared for their abilities to meet the above criteria. Ground beef samples were individually spiked with five genetically distinct strains of E. coli O157: H7 at concentrations of 17 and 1.7 CFU/65 g and then subjected to the various testing methodologies. There was no difference (P > 0.05) in the abilities of the PCR-based methods to detect E. coli O157:H7 inoculated in ground beef at 1.7 CFU/65 g. The culture-based systems detected more positive samples than did the PCR-based systems, but the detection times (21 to 48 h) were at least 9 h longer than those for the PCR-based methods (7.5 to 12 h). Ground beef samples were also spiked with potentially cross-reactive strains. The PCR-based systems that employed an immunomagnetic separation step prior to detection produced fewer false-positive results.


Sign in / Sign up

Export Citation Format

Share Document