scholarly journals Method Proposal for Minimize the Phase Shifters Differential Voltage applicable in Phase-Only Controlled Antenna Arrays

2021 ◽  
Vol 15 (2) ◽  
pp. 9-14
Author(s):  
Cezar-Ion ADOMNITEI ◽  
Mihai DIMIAN ◽  
Ang YOU ◽  
Cezar-Eduard LESANU ◽  
Adrian DONE
Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 355 ◽  
Author(s):  
Holger Maune ◽  
Matthias Jost ◽  
Roland Reese ◽  
Ersin Polat ◽  
Matthias Nickel ◽  
...  

Tunable Liquid Crystal (LC)-based microwave components are of increasing interest in academia and industry. Based on these components, numerous applications can be targeted such as tunable microwave filters and beam-steering antenna systems. With the commercialization of first LC-steered antennas for Ku-band e.g., by Kymeta and Alcan Systems, LC-based microwave components left early research stages behind. With the introduction of terrestrial 5G communications systems, moving to millimeter-wave communication, these systems can benefit from the unique properties of LC in terms of material quality. In this paper, we show recent developments in millimeter wave phase shifters for antenna arrays. The limits of classical high-performance metallic rectangular waveguides are clearly identified. A new implementation with dielectric waveguides is presented and compared to classic approaches.


2021 ◽  
Author(s):  
Maryam Shadi ◽  
Zahra Atlasbaf

Abstract Synthesizing antenna arrays for fifth-generation communication technology is the most significant issue in the electromagnetic industry and academia. This paper focused on a comprehensive algorithm to design an antenna array used as a 5G base station antenna. The proposed algorithm's goal has an array antenna with high gain, continuous wide scan angle without grating lobe, compact size, minimum cost, and simplicity of construction, particularly in the array feeding network's system. For this purpose, several factors, such as subarray topology, complex weighting function, the minimum number of RF elements, and the optimum number of microstrip layers will be intended. The desired topology is specified with the grating lobe's minimum level by comparing the array factor of different subarray combinations. We consider some limitations in our algorithm that improve the specification than before research and reduce the runtime algorithm. Moreover, the number of phase shifters is decreased to more than 53%, substantially improved than previous works. The GAPSO technique is then used to determine the excitation coefficients' optimal value to control SLL and beam scanning. Amplitude accuracy and phase are considered 0.1 and 1 degree, respectively, to avoid tolerance construction. The proposed method is also applied to design a linear array antenna using a 5G base station antenna in 28 GH. This aperiodic linear array's electromagnetic parameter consists of HPBW of 2.8◦, a gain of 20 dB, scanning up to ±50◦ in one direction, and SLL is below -15 dB.


2021 ◽  
Author(s):  
Corentin Fonteneau ◽  
Matthieu Crussière ◽  
Bruno Jahan

Abstract 5G and IEEE 802.11ay introduce the use of the millimeter band as one promising solution to provide broadband wireless communication at multi-Gb/s user data rate. Due to the severe path-loss at such frequencies, it is generally assumed that large antenna arrays are used at the base station to steer narrow beams and build highly directionnal communication links towards the terminal points. However, broader and less directional beams are also of high interest in some of the steps involved in the establishment or the maintenance of the communication links. Indeed, search of a large area by narrow beams becomes too time consuming and link outage becomes more critical, thus affecting the latency and the robustness of the communications. A method enabling an adaptation of the beam widths is then worthwhile to consider. In this article, we investigate how narrow beams naturally produced by large antenna arrays can be broadened to adapt the beam width to a desired angular sector. We consider that the multi-antenna processing is performed by phase shifters on the radio-frequency stage since its digital counterpart is hardly feasible in practice at such high frequencies. The main idea of our systematic phase-only beam broadening technique relies on the determination of a quadratic phase excitation law from a desired beam width and steering angle. We first lead a thorough analysis of the radiation behavior regarding the coefficients of such quadratic excitation. We then propose a calculation method for determining the polynomial coefficients as a function of the desired beam width and steering angle. This non-iterative beam broadening method is described for boresight and non-boresight directions and is intended for discrete antenna arrays.


Author(s):  
M. Dragoman ◽  
M. Aldrigo ◽  
S. Iordanescu ◽  
M. Modreanu ◽  
I. Povey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document