scholarly journals Microbial nutrient limitation in prairie saline lakes with high sulfate concentration

1995 ◽  
Vol 40 (3) ◽  
pp. 566-574 ◽  
Author(s):  
Marley J. Waker ◽  
Richard D. Robarts
2009 ◽  
Vol 66 (9) ◽  
pp. 1435-1448 ◽  
Author(s):  
Courtney R. Salm ◽  
Jasmine E. Saros ◽  
Sherilyn C. Fritz ◽  
Christopher L. Osburn ◽  
David M. Reineke

We investigated patterns of primary production across prairie saline lakes in the central and northern Great Plains of the United States. Based on comparative lake sampling in 2004, seasonal predictors of algal primary productivity were identified within subsets of similar lakes using a combination of Akaike’s information criterion (AIC) and classification and regression trees (CART). These models indicated complex patterns of nutrient limitation by nitrogen (N), phosphorus (P), and iron (Fe) within different lake groups. Nutrient enrichment assays (control, + Fe, + N, + P, + N + P) were performed in spring and summer of 2006 to determine if phytoplankton in selected lakes followed predicted patterns of nutrient limitation. Both the comparative lake sampling and experimental results indicated that N limitation was widespread in these prairie lakes, with evidence for secondary P limitation in certain lakes. In the experiments, iron did not stimulate primary production. Our results suggest that given the diverse geochemical nature of these lakes, classification models that separate saline lakes into subsets may be an effective method for improving predictions of algal production.


2015 ◽  
Vol 12 (14) ◽  
pp. 11863-11890
Author(s):  
B. Burpee ◽  
J. E. Saros ◽  
R. M. Northington ◽  
K. S. Simon

Abstract. Permafrost is degrading across regions of the Arctic, which can lead to increases in nutrient concentrations in surface freshwaters. The oligotrophic state of many arctic lakes suggests that enhanced nutrient inputs may have important effects on these systems, but little is known about microbial nutrient limitation patterns in these lakes. We investigated microbial extracellular enzyme activities (EEAs) to infer seasonal nutrient dynamics and limitation across 24 lakes in southwest Greenland during summer (June and July). From early to late summer, enzyme activities that indicate microbial carbon (C), nitrogen (N), and phosphorus (P) demand increased in both the epilimnia and hypolimnia by 74 % on average. Microbial investment in P acquisition was generally higher than that for N. Interactions among EEAs indicated that bacteria were primarily P limited. Dissolved organic matter (DOM, measured as dissolved organic carbon) was strongly and positively correlated with microbial P demand (R2 = 0.84 in July), while there were no relationships between DOM and microbial N demand. Microbial P limitation in June epilimnia (R2 = 0.67) and July hypolimnia (R2 = 0.57) increased with DOM concentration. The consistency of microbial P limitation from June to July was related to the amount of DOM present, with some low DOM lakes becoming N-limited in July. Our results suggest that future changes in P or DOM inputs to these lakes are likely to alter microbial nutrient limitation patterns.


2022 ◽  
Vol 806 ◽  
pp. 150555
Author(s):  
Jie Yi ◽  
Quanchao Zeng ◽  
Tangyingze Mei ◽  
Shengnan Zhang ◽  
Qi Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document