scholarly journals Effects of epiphyte load on optical properties and photosynthetic potential of the seagrasses Thalassia testudinum Banks ex König and Zostera marina L.

2003 ◽  
Vol 48 (1part2) ◽  
pp. 456-463 ◽  
Author(s):  
Lisa A. Drake ◽  
Fred C. Dobbs ◽  
Richard C. Zimmerman
2019 ◽  
Vol 117 (4) ◽  
pp. 340-350 ◽  
Author(s):  
Heath W Garris ◽  
Thomas H Settle ◽  
Jonathan E Crossman ◽  
Stephen J Grider ◽  
Shawnté L Michaels

Abstract The neonicotinoid systemic insecticide imidacloprid has proven to be an effective treatment for the prevention and control of hemlock woolly adelgid (Adelges tsugae Annand) in southeastern populations of eastern hemlock (Tsuga canadensis L.). Recent studies have demonstrated that imidacloprid and A. tsugae both stimulate salicylic acid-dependent physiological responses in plant tissues responsible for plant defenses against pathogens, timing of developmental outcomes including flowering and leaf senescence, and resilience to abiotic stressors. We evaluated the interacting effects of A. tsugae presence/absence and treatment with imidacloprid on leaf optical properties indicative of photosynthetic potential, photosynthetic efficiency, and tissue senescence. Our results indicated that A. tsugae changes lower canopy leaf optical properties indicative of reduced photosynthetic potential/efficiency and accelerated senescence in mature leaves. Imidacloprid was associated with declines in photosynthetic potential and showed a largely similar, though less pronounced, effect on leaf spectral properties to that of A. tsugae.


Author(s):  
K. Tsuno ◽  
T. Honda ◽  
Y. Harada ◽  
M. Naruse

Developement of computer technology provides much improvements on electron microscopy, such as simulation of images, reconstruction of images and automatic controll of microscopes (auto-focussing and auto-correction of astigmatism) and design of electron microscope lenses by using a finite element method (FEM). In this investigation, procedures for simulating the optical properties of objective lenses of HREM and the characteristics of the new lens for HREM at 200 kV are described.The process for designing the objective lens is divided into three stages. Stage 1 is the process for estimating the optical properties of the lens. Firstly, calculation by FEM is made for simulating the axial magnetic field distributions Bzc of the lens. Secondly, electron ray trajectory is numerically calculated by using Bzc. And lastly, using Bzc and ray trajectory, spherical and chromatic aberration coefficients Cs and Cc are numerically calculated. Above calculations are repeated by changing the shape of lens until! to find an optimum aberration coefficients.


Author(s):  
A. Strojnik ◽  
J.W. Scholl ◽  
V. Bevc

The electron accelerator, as inserted between the electron source (injector) and the imaging column of the HVEM, is usually a strong lens and should be optimized in order to ensure high brightness over a wide range of accelerating voltages and illuminating conditions. This is especially true in the case of the STEM where the brightness directly determines the highest resolution attainable. In the past, the optical behavior of accelerators was usually determined for a particular configuration. During the development of the accelerator for the Arizona 1 MEV STEM, systematic investigation was made of the major optical properties for a variety of electrode configurations, number of stages N, accelerating voltages, 1 and 10 MEV, and a range of injection voltages ϕ0 = 1, 3, 10, 30, 100, 300 kV).


Author(s):  
Marcos F. Maestre

Recently we have developed a form of polarization microscopy that forms images using optical properties that have previously been limited to macroscopic samples. This has given us a new window into the distribution of structure on a microscopic scale. We have coined the name differential polarization microscopy to identify the images obtained that are due to certain polarization dependent effects. Differential polarization microscopy has its origins in various spectroscopic techniques that have been used to study longer range structures in solution as well as solids. The differential scattering of circularly polarized light has been shown to be dependent on the long range chiral order, both theoretically and experimentally. The same theoretical approach was used to show that images due to differential scattering of circularly polarized light will give images dependent on chiral structures. With large helices (greater than the wavelength of light) the pitch and radius of the helix could be measured directly from these images.


Sign in / Sign up

Export Citation Format

Share Document