LOCALIZING THE THREATS OF CLIMATE CHANGE IN MOUNTAIN ENVIRONMENTS

Author(s):  
M Breiling ◽  
P Charamza
2021 ◽  
Vol 9 ◽  
Author(s):  
Marjorie Bison ◽  
Nigel G. Yoccoz ◽  
Bradley Z. Carlson ◽  
Geoffrey Klein ◽  
Idaline Laigle ◽  
...  

The alarming decline of amphibians around the world calls for complementary studies to better understand their responses to climate change. In mountain environments, water resources linked to snowmelt play a major role in allowing amphibians to complete tadpole metamorphosis. As snow cover duration has significantly decreased since the 1970s, amphibian populations could be strongly impacted by climate warming, and even more in high elevation sites where air temperatures are increasing at a higher rate than at low elevation. In this context, we investigated common frog (Rana temporaria) breeding phenology at two different elevations and explored the threats that this species faces in a climate change context. Our objectives were to understand how environmental variables influence the timing of breeding phenology of the common frog, and explore the threats that amphibians face in the context of climate change in mountain areas. To address these questions, we collected 11 years (2009–2019) of data on egg-spawning date, tadpole development stages, snowmelt date, air temperature, rainfall and drying up of wetland pools at ∼1,300 and ∼1,900 m a.s.l. in the French Alps. We found an advancement of the egg-spawning date and snowmelt date at low elevation but a delay at high elevations for both variables. Our results demonstrated a strong positive relationship between egg-spawning date and snowmelt date at both elevations. We also observed that the risk of frost exposure increased faster at high elevation as egg-spawning date advanced than at low elevation, and that drying up of wetland pools led to tadpole mortality at the high elevation site. Within the context of climate change, egg-spawning date is expected to happen earlier in the future and eggs and tadpoles of common frogs may face higher risk of frost exposure, while wetland drying may lead to higher larval mortality. However, population dynamics studies are needed to test these hypotheses and to assess impacts at the population level. Our results highlight climate-related threats to common frog populations in mountain environments, but additional research should be conducted to forecast how climate change may benefit or harm amphibian populations, and inform conservation and land management plans in the future.


Author(s):  
Margreth Keiler ◽  
Jasper Knight ◽  
Stephan Harrison

Climate and environmental changes associated with anthropogenic global warming are being increasingly identified in the European Alps, as seen by changes in long-term high-alpine temperature, precipitation, glacier cover and permafrost. In turn, these changes impact on land-surface stability, and lead to increased frequency and magnitude of natural mountain hazards, including rock falls, debris flows, landslides, avalanches and floods. These hazards also impact on infrastructure, and socio-economic and cultural activities in mountain regions. This paper presents two case studies (2003 heatwave, 2005 floods) that demonstrate some of the interlinkages between physical processes and human activity in climatically sensitive alpine regions that are responding to ongoing climate change. Based on this evidence, we outline future implications of climate change on mountain environments and its impact on hazards and hazard management in paraglacial mountain systems.


Author(s):  
Lukas U. Arenson ◽  
Matthias Jakob

Mountain environments, home to about 12% of the global population and covering nearly a quarter of the global land surface, create hazardous conditions for various infrastructures. The economic and ecologic importance of these environments for tourism, transportation, hydropower generation, or natural resource extraction requires that direct and indirect interactions between infrastructures and geohazards be evaluated. Construction of infrastructure in mountain permafrost environments can change the ground thermal regime, affect gravity-driven processes, impact the strength of ice-rich foundations, or result in permafrost aggradation via natural convection. The severity of impact, and whether permafrost will degrade or aggrade in response to the construction, is a function of numerous parameters including climate change, which needs to be considered when evaluating the changes in existing or formation of new geohazards. The main challenge relates to the uncertainties associated with the projections of medium- (decadal) and long-term (century-scale) climate change. A fundamental understanding of the various processes at play and a good knowledge of the foundation conditions is required to ascertain that infrastructure in permafrost environment functions as intended. Many of the tools required for identifying geohazards in the periglacial and appropriate risk management strategies are already available.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 957
Author(s):  
Mohamed Abdelaal ◽  
Mauro Fois ◽  
Mohammed A. Dakhil ◽  
Gianluigi Bacchetta ◽  
Ghada A. El-Sherbeny

Knowledge about population attributes, current geographic distribution, and changes over predicted climate change for many threatened endemic vascular plants is particularly limited in arid mountain environments. Primula boveana is one of the rarest and threatened plants worldwide, surviving exclusively in Saint Catherine Protectorate in the Sinaic biogeographic subsector of Egypt. This study aimed to define the current state of P. boveana populations, predict its current potential distribution, and use the best-model outputs to guide in field sampling and to forecast its future distribution under two climate change scenarios. The MaxEnt algorithm was used by relating 10 occurrence-points with different environmental predictors (27 bioclimatic, 3 topographic, and 8 edaphic factors). At the current knowledge level, the population size of P. boveana consists of 796 individuals, including 137 matures, distributed in only 250 m2. The Canonical Correlation Analysis (CCorA) displayed that population attributes (density, cover, size index, and plant vigor) were positively correlated with elevation, precipitation, and pH. Based on the best-fitting model, most predicted suitable central sites (69 km2) of P. boveana were located in the cool shaded high-elevated middle northern part of St. Catherine. Elevation, precipitation, temperature, and soil pH were the key contributors to P. boveana distribution in Egypt. After field trips in suitable predicted sites, we confirmed five extinct localities where P. boveana has been previously recorded and no new population was found. The projected map showed an upward range shift through the contraction of sites between 1800 and 2000 m and expansion towards high elevation (above 2000 m) at the southern parts of the St. Catherine area. To conserve P. boveana, it is recommended to initiate in situ conservation through reinforcement and reintroduction actions.


Author(s):  
Rohitashw Kumar ◽  
Saika Manzoor ◽  
Dinesh Kumar Vishwakarma ◽  
N. L. Kushwaha ◽  
Ahmed Elbeltagi ◽  
...  

The current study was planned to simulate runoff due to the snowmelt in the Lidder River catchment of Himalayan region under climate change scenarios. A basic degree-day model, Snowmelt-Runoff Model (SRM) was utilized to assess the hydrological consequences of change in climate. The SRM model performance during the calibration and validation was assessed using volume difference (Dv) and coefficient of determination (R2). The Dv was found as 11.7, -10.1, -11.8, 1.96, and 8.6 during 2009-2014, respectively, while the R2 is 0.96, 0.92, 0.95, 0.90, and 0.94, respectively. The Dv and R2 values indicating that the simulated snowmelt runoff has a close agreement with the observed value. The simulated findings were also assessed under the different scenarios of climate change: a) increases in precipitation by +20 %, b) temperature rise of +2 °C, and c) temperature rise of +2 °C with a 20 % increase in snow cover. In scenario "b", the simulated results showed that runoff increased by 53 % in summer (April–September). In contrast, the projected increased discharge for scenarios "a" and "c" was 37 % and 67 %, respectively. In high elevation data-scarce mountain environments, the SRM is efficient in forecasting future water supplies due to the snowmelt runoff.


Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 999
Author(s):  
Kaiza R. Kaganzi ◽  
Aida Cuni-Sanchez ◽  
Fatuma Mcharazo ◽  
Emanuel H. Martin ◽  
Robert A. Marchant ◽  
...  

Mountain environments and communities are disproportionately impacted by climate change. Changes in temperature are greater than at lower elevations, which affect the height of the cloud base and local rainfall patterns. While our knowledge of the biophysical nature of climate change in East Africa has increased in the past few years, research on Indigenous farmers’ perceptions and adaptation responses is still lacking, particularly in mountains regions. Semi-structured interviews were administered to 300 farmers on Mount Kilimanjaro (n = 150) and the Udzungwa Mountains (n = 150) in Tanzania across gender and wealth groups. Respondents in both mountains reported not only changes in rainfall and temperature, corresponding with meteorological data, but also a greater incidence of fog, wind, frost, and hailstorms—with impacts on decreased crop yields and increased outbreaks of pests. The most common adaptation strategies used were improved crop varieties and inputs. Wealthier households diversified into horticulture or animal rearing, while poorer households of Hehe ethnicity diversified to labour and selling firewood. Despite being climate change literate and having access to radios, most respondents used Indigenous knowledge to decide on planting dates. Our findings highlight how context and culture are important when designing adaptation options and argue for greater involvement of local stakeholders in adaptation planning using a science-with-society approach. Place-based results offer generalisable insights that have application for other mountains in the Global South.


Sign in / Sign up

Export Citation Format

Share Document