Preparing to teach electronics and control technologies

Author(s):  
Tony Cowell
Author(s):  
Stephen R. Barley

The four chapters of this book summarize the results of thirty-five years dedicated to studying how technologies change work and organizations. The first chapter places current developments in artificial intelligence into the historical context of previous technological revolutions by drawing on William Faunce’s argument that the history of technology is one of progressive automation of the four components of any production system: energy, transformation, and transfer and control technologies. The second chapter lays out a role-based theory of how technologies occasion changes in organizations. The third chapter tackles the issue of how to conceptualize a more thorough approach to assessing how intelligent technologies, such as artificial intelligence, can shape work and employment. The fourth chapter discusses what has been learned over the years about the fears that arise when one sets out to study technical work and technical workers and methods for controlling those fears.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 538
Author(s):  
Nicoleta Cristina Gaitan ◽  
Ioan Ungurean

The development of the smart building concept and building automation field is based on the exponential evolution of monitoring and control technologies. Residents of the smart building must interact with the monitoring and control system. A widely used method is specific applications executed on smartphones, tablets, and PCs with Bluetooth connection to the building control system. At this time, smartphones are increasingly used in everyday life for payments, reading newspapers, monitoring activity, and interacting with smart homes. The devices used to build the control system are interconnected through a specific network, one of the most widespread being the Building Automation and Control Network (BACnet) network. Here, we propose the use of the BACnet Application Layer over Bluetooth. We present a proposal of a concept and a practical implementation that can be used to test and validate the operation of the BACnet Application Layer over Bluetooth.


2021 ◽  
pp. 1-27
Author(s):  
Saddam Hocine Derrouaoui ◽  
Yasser Bouzid ◽  
Mohamed Guiatni ◽  
Islam Dib

Recently, reconfigurable drones have gained particular attention in the field of automation and flying robots. Unlike the conventional drones, they are characterized by a variable mechanical structure in flight, geometric adaptability, aerial reconfiguration, high number of actuators and control inputs, and variable mathematical model. In addition, they are exploited to flight in more cluttered environments, avoid collisions with obstacles, transport and grab objects, cross narrow and small spaces, decrease different aerial damages, optimize the consumed energy, and improve agility and maneuverability in flight. Moreover, these new drones are considered as a viable solution to provide them with specific and additional functionalities. They are a promising solution in the near future, since they allow increasing considerably the capabilities and performance of classical drones in terms of multi-functionalities, geometric adaptation, design characteristics, consumed energy, control, maneuverability, agility, efficiency, obstacles avoidance, and fault tolerant control. This paper explores very interesting and recent research works, which include the classification, the main characteristics, the various applications, and the existing designs of this particular class of drones. Besides, an in-depth review of the applied control strategies will be presented. The links of the videos displaying the results of these researches will be also shown. A comparative study between the different types of flying vehicles will be established. Finally, several new challenges and future directions for reconfigurable drones will be discussed.


Transport ◽  
2010 ◽  
Vol 25 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Adolfas Baublys ◽  
Aldona Jarašūnienė

Intelligent Transport Systems (ITS) work with information and control technologies providing the core of ITS functions. Some of these technologies like loop detectors are well known to transportation professionals. However, there are a number of less familiar technologies and system concepts that are keys to ITS functions. Although information and control technologies act as a technical core of ITS, human factors also remain vitally important and potentially very complex issues. The process of operating ITS is influenced by a number of random factors. Along with an assessment of dependence upon separate random factors, the classification of those in the whole hierarchical structure of operating ITS is presented. Statistical information on operating ITS is renewed and replenished in the course of time. With the growth of information amounts, the costs of storing them also increase. Therefore, the article presents relevant algorithms for obtaining required statistical assessments with the least statistical information. It is deduced that while modelling the process of operating ITS, an analytical description of random factors applying non‐parametric assessment is suitable.


2021 ◽  
Vol 334 ◽  
pp. 02029
Author(s):  
Vasily Demin ◽  
Alexey Terentyev

The article deals with the direction of solving complex problems of interaction between the elements of the transport and logistics system of the Moscow region as a complex structure of management methods in multi-criteria systems and technologies for monitoring the quality of processes. The control method should optimize the system parameters, and control technologies (radio frequency cargo identification) implement feedback in the system.


Sign in / Sign up

Export Citation Format

Share Document