Supervision and the termination process

Keyword(s):  
Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 585-594
Author(s):  
Olivier Namy ◽  
Isabelle Hatin ◽  
Guillaume Stahl ◽  
Hongmei Liu ◽  
Stephanie Barnay ◽  
...  

Abstract In eukaryotes, translation termination is dependent on the availability of both release factors, eRF1 and eRF3; however, the precise mechanisms involved remain poorly understood. In particular, the fact that the phenotype of release factor mutants is pleiotropic could imply that other factors and interactions are involved in translation termination. To identify unknown elements involved in this process, we performed a genetic screen using a reporter strain in which a leaky stop codon is inserted in the lacZ reporter gene, attempting to isolate factors modifying termination efficiency when overexpressed. Twelve suppressors and 11 antisuppressors, increasing or decreasing termination readthrough, respectively, were identified and analyzed for three secondary phenotypes often associated with translation mutations: thermosensitivity, G418 sensitivity, and sensitivity to osmotic pressure. Interestingly, among these candidates, we identified two genes, SSO1 and STU2, involved in protein transport and spindle pole body formation, respectively, suggesting puzzling connections with the translation termination process.


Microbiology ◽  
2006 ◽  
Vol 152 (9) ◽  
pp. 2515-2528 ◽  
Author(s):  
M. Sofia Ciampi

Rho-dependent transcription terminators participate in sophisticated genetic regulatory mechanisms, in both bacteria and phages; they occur in regulatory regions preceding the coding sequences of genes and within coding sequences, as well as at the end of transcriptional units, to prevent readthrough transcription. Most Rho-dependent terminators have been found in enteric bacteria, but they also occur in Gram-positive bacteria and may be widespread among bacteria. Rho-dependent termination requires both cis-acting elements, on the mRNA, and trans-acting factors. The only cis-acting element common to Rho-dependent terminators is richness in rC residues. Additional sequence elements have been observed at different Rho termination sites. These ‘auxiliary elements' may assist in the termination process; they differ among terminators, their occurrence possibly depending on the function and sequence context of the terminator. Specific nucleotides required for termination have also been identified at Rho sites. Rho is the main factor required for termination; it is a ring-shaped hexameric protein with ATPase and helicase activities. NusG, NusA and NusB are additional factors participating in the termination process. Rho-dependent termination occurs by binding of Rho to ribosome-free mRNA, C-rich sites being good candidates for binding. Rho's ATPase is activated by Rho–mRNA binding, and provides the energy for Rho translocation along the mRNA; translocation requires sliding of the message into the central hole of the hexamer. When a polymerase pause site is encountered, the actual termination occurs, and the transcript is released by Rho's helicase activity. Many aspects of this process are still being studied. The isolation of mutants suppressing termination, site-directed mutagenesis of cis-acting elements in Rho-dependent termination, and biochemistry, are and will be contributing to unravelling the still undefined aspects of the Rho termination machinery. Analysis of the more sophisticated regulatory mechanisms relying on Rho-dependent termination may be crucial in identifying new essential elements for termination.


2008 ◽  
Vol 95 (suppl 2) ◽  
pp. S137-S142 ◽  
Author(s):  
D LePoire ◽  
P Richmond ◽  
J -J. Cheng ◽  
S Kamboj ◽  
J Arnish ◽  
...  

1963 ◽  
Vol 41 (6) ◽  
pp. 1578-1587 ◽  
Author(s):  
Jan A. Herman ◽  
Pierre M. Hupin

The polymerization of vinyl chloride in the gas phase by X rays gives a solid polymer of 1140 average molecular weight. The G value of monomer disappearance varies from 100 to 400 and depends on pressure and temperature. From the measure of the rate of polymerization it was possible to deduce the activation energy of the chain propagation steps: 2.5 kcal/mole, and that of the hindered termination process: 7.4 kcal/mole. The negative temperature co-efficient of the polymerization is explained by the importance of this hindered termination process.


Author(s):  
Michelle S. Ballan ◽  
Maria S. Mera

The termination phase of clinical practice is an important component of the therapeutic process. The ending of the therapeutic relationship, whether planned or unplanned, can elicit feelings of loss, separation, and guilt, impacting both the client and the practitioner. The reasons for ending service and preparation for termination can affect the client's gains. Systematic research on the termination process and the maintenance of gains is needed to further determine variables for successful termination.


1973 ◽  
Vol 82 (1) ◽  
pp. 121-128 ◽  
Author(s):  
Mary E. Stafford ◽  
Calvin S. McLaughlin

Sign in / Sign up

Export Citation Format

Share Document