Broader Impacts of Challenging Rape-Supportive Beliefs

Keyword(s):  
2021 ◽  
pp. 088541222199424
Author(s):  
Mauro Francini ◽  
Lucia Chieffallo ◽  
Annunziata Palermo ◽  
Maria Francesca Viapiana

This work aims to reorganize theoretical and empirical research on smart mobility through the systematic literature review approach. The research goal is to reach an extended and shared definition of smart mobility using the cluster analysis. The article provides a summary of the state of the art that can have broader impacts in determining new angles for approaching research. In particular, the results will be a reference for future quantitative developments for the authors who are working on the construction of a territorial measurement model of the smartness degree, helping them in identifying performance indicators consistent with the definition proposed.


2021 ◽  
pp. 014664532110109
Author(s):  
A.F. Nisbet

The importance of involving experts in the development of strategies for managing areas contaminated as a result of a nuclear accident is now well recognised. Following the Chernobyl accident in 1986, the initial focus, quite understandably, was on the technical aspects of reducing doses to the affected population. Subsequently, work carried out in the UK and elsewhere in Europe looked at the broader impacts of protective actions on agriculture, the environment, and society. From 1997, a group of experts from academia, government, and non-government organisations met regularly in the UK to debate these issues. One of the outputs included the first version of the UK Recovery Handbook for Radiation Incidents in 2005. Based on the success of the UK group, a European network of experts was established, leading to the development of European handbooks in 2009. The UK handbooks are living documents that are updated regularly with substantive input from experts.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Olivia H Wilkins ◽  
Camillus F Buzard

A major challenge in teaching is helping students integrate course concepts to understand the big picture of a field and apply those concepts in new situations. To address this challenge in a tutorial course about astrochemistry (taught by graduate students to chemistry undergraduates), we implemented a progressive writing assignment that culminated in a final presentation. In the progressive writing assignment, students chose an astrochemistry topic they found interesting to be the subject of three sequential papers, which became the basis for their presentations. The purpose of this assignment was to gradually introduce chemistry students to research areas in astronomy, which is by nature outside the general chemistry curriculum, while also providing students with regular feedback. Over the course of the assignment, students applied key themes in the course—significance of astrochemistry research, research methods, and chemistry in astronomical environments—separately to their chosen topics before explaining in the final presentation how these different aspects of astrochemistry work together. By incorporating stories and anaologies, rather than just facts, students gave presentations that were accessible to a novice audience. As a result, students explained broader impacts of astrochemistry research, rather than just focusing on results, and they entertained questions with answers that went beyond clarification of the material discussed.


2018 ◽  
Vol 80 (2) ◽  
pp. 124-131 ◽  
Author(s):  
Emily A. Kane ◽  
E. Dale Broder ◽  
Andrew C. Warnock ◽  
Courtney M. Butler ◽  
A. Lynne Judish ◽  
...  

Evolution education poses unique challenges because students can have preconceptions that bias their learning. Hands-on, inquiry approaches can help overcome preset beliefs held by students, but few such programs exist and teachers typically lack access to these resources. Experiential learning in the form of self-guided kits can allow evolution education programs to maximize their reach while still maintaining a high-quality resource. We created an inquiry-based kit that uses live Trinidadian guppies to teach evolution by natural selection using the VIST (Variation, Inheritance, Selection, Time) framework. Our collaborative team included evolutionary biologists and education specialists, and we were able to combine expertise in evolution research and inquiry-based kit design in the development of this program. By constructing the kits with grant funds slated for broader impacts and maintaining them at our university's Education and Outreach Center, we made these kits freely available to local schools over the long term. Students and teachers have praised how clearly the kits teach evolution by natural selection, and we are excited to share this resource with readers of The American Biology Teacher.


2021 ◽  
pp. 233-240
Author(s):  
Dennis Meredith

Even though your prime duty is to your research, becoming a public educator can serve both one’s research and the information needs of the public. It also serves your field as a whole. Public education can mean teaching a science appreciation course, giving public lectures, registering with the institution’s speakers bureau, and advising the media on science and technology. Working with local schools, mentoring young people, and helping science centers create exhibits are also productive activities and bring professional benefits. These activities teach valuable communication skills, meet the Broader Impacts Criterion of federal grants, highlight one’s own department and institution, and bring you visibility.


Author(s):  
Marin S Robinson ◽  
Fredricka L Stoller ◽  
Molly Constanza-Robinson ◽  
James K Jones

All good proposals must come to an end. In this chapter, we examine conventional ways in which authors summarize and conclude their Project Descriptions. We consider project timelines, lists of expected outcomes, and statements of broader impacts. By the end of this chapter, you should be able to ■ Develop a project timeline ■ Generate a list of expected outcomes ■ Suggest broader impacts of your proposed work ■ Reinforce the importance of your proposed work in concluding remarks As you work through the chapter, you will write the closing section of your own Project Description. The Writing on Your Own tasks throughout the chapter guide you step by step as you do the following: 14A Create a project timeline 14B Create a list of expected outcomes 14C Conclude the proposed work 14D Complete the Outcomes and Impacts section Like the previous sections of the Project Description (chapters 12 and 13), there is no one right way to end a proposal. However, proposal guidelines often instruct authors to include a projected timeline, a list of expected outcomes, a summary of objectives, and/or a statement of relevance or broader impacts in their concluding remarks. For example, the ACS Division of Analytical Chemistry Graduate Fellowship announcement (excerpt 11A) asks for a statement that links “the relevance of [the proposed] work to analytical chemistry.” The NSF Grant Proposal Guide (see excerpt 15B) asks for “objectives for the period of the proposed work,” their “expected significance,” and their “relationship to longer-term goals of the PI’s project.” Moreover, the PI must describe “as an integral part of the narrative, the broader impacts of the proposed activities.” Not surprisingly, each of the authors of our 22 CAREER proposals approached this task slightly differently. We examine several of their approaches in this chapter. We begin with an excerpt that you can read and analyze on your own (excerpt 14A), specifically, the conclusion to Harpp’s proposal regarding plume-ridge interaction in the Galápagos. She includes a formal timeline (titled “Project Schedule”) and conclusions for her work.


2019 ◽  
pp. 208-225
Author(s):  
Eduard Fosch-Villaronga
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document