Write Like a Chemist
Latest Publications


TOTAL DOCUMENTS

18
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

Published By Oxford University Press

9780195367423, 9780197562437

Author(s):  
Marin S Robinson ◽  
Fredricka L Stoller ◽  
Molly Constanza-Robinson ◽  
James K Jones

All good proposals must come to an end. In this chapter, we examine conventional ways in which authors summarize and conclude their Project Descriptions. We consider project timelines, lists of expected outcomes, and statements of broader impacts. By the end of this chapter, you should be able to ■ Develop a project timeline ■ Generate a list of expected outcomes ■ Suggest broader impacts of your proposed work ■ Reinforce the importance of your proposed work in concluding remarks As you work through the chapter, you will write the closing section of your own Project Description. The Writing on Your Own tasks throughout the chapter guide you step by step as you do the following: 14A Create a project timeline 14B Create a list of expected outcomes 14C Conclude the proposed work 14D Complete the Outcomes and Impacts section Like the previous sections of the Project Description (chapters 12 and 13), there is no one right way to end a proposal. However, proposal guidelines often instruct authors to include a projected timeline, a list of expected outcomes, a summary of objectives, and/or a statement of relevance or broader impacts in their concluding remarks. For example, the ACS Division of Analytical Chemistry Graduate Fellowship announcement (excerpt 11A) asks for a statement that links “the relevance of [the proposed] work to analytical chemistry.” The NSF Grant Proposal Guide (see excerpt 15B) asks for “objectives for the period of the proposed work,” their “expected significance,” and their “relationship to longer-term goals of the PI’s project.” Moreover, the PI must describe “as an integral part of the narrative, the broader impacts of the proposed activities.” Not surprisingly, each of the authors of our 22 CAREER proposals approached this task slightly differently. We examine several of their approaches in this chapter. We begin with an excerpt that you can read and analyze on your own (excerpt 14A), specifically, the conclusion to Harpp’s proposal regarding plume-ridge interaction in the Galápagos. She includes a formal timeline (titled “Project Schedule”) and conclusions for her work.


Author(s):  
Marin S Robinson ◽  
Fredricka L Stoller ◽  
Molly Constanza-Robinson ◽  
James K Jones

This chapter addresses how to write abstracts and titles for journal articles. Both the abstract and title provide succinct, informative (not descriptive) summaries of the research. To this end, they are usually written in the final stages of the writing process. After completing this chapter, you should be able to do the following: ■ Write a concise and informative abstract ■ Write a concise and informative title As you work through the chapter, you will write an abstract and title for your own paper. The Writing on Your Own tasks throughout the chapter will guide you step by step as you do the following: 7A Read titles and abstracts 7B Prepare to write 7C Write your abstract 7D Write your title 7E Practice peer review 7F Fine-tune your abstract and title When compared to the Introduction, Methods, Results, and Discussion sections of a journal article, the title and abstract are quite short; the title usually has fewer than 20 words, and many journals limit the abstract to fewer than 200 words. Despite their brevity (and perhaps because of it), the title and abstract are the most widely read sections of the journal article and thus are viewed by many as the most important sections of the journal article. As you read the title and abstract in excerpt 7A, consider the following: a. Read the title. Which of the following are included: research topic, importance, gap statement, procedures, instrumentation, results, interpretations, citations, conclusions? b. The abstract contains six sentences (107 words). Briefly state the purpose of each sentence. Based on these purposes, propose a move structure for the abstract. c. Are there any sentences in the abstract that do not include science content? Explain. d. Based only on the title and abstract, who are the intended audiences for this article (including subdisciplines of chemistry)? Give reasons for your choices.


Author(s):  
Marin S Robinson ◽  
Fredricka L Stoller ◽  
Molly Constanza-Robinson ◽  
James K Jones

This chapter focuses on writing the first section of the Project Description. The central purposes of this section are to identify project goals and objectives, highlight the importance of the research, provide relevant background information, and introduce the proposed research. By the end of this chapter, you should be able to do the following: ■ Distinguish between broad goals and specific objectives ■ Format a list of objectives correctly ■ Emphasize the importance of your research ■ Affirm your intellectual merit ■ Know when and how to introduce your proposed work ■ Select appropriate headings As you work through the chapter, you will write the opening section of your Project Description. The Writing on Your Own tasks throughout the chapter guide you step by step as you do the following: 12A Prepare to write 12B Create a list of project goals and objectives 12C Introduce and develop the research story 12D Introduce your proposed work 12E Complete the opening section We begin with excerpt 12A for you to read and analyze on your own. The excerpt contains only parts of the author’s original Goals and Importance section. Her full section starts with a statement of goals and significance, which is followed by individual descriptions of three separate but related studies. In excerpt 12A, we include only (1) the statement of goals and significance and (2) the description of the second study.


Author(s):  
Marin S Robinson ◽  
Fredricka L Stoller ◽  
Molly Constanza-Robinson ◽  
James K Jones

This chapter focuses on the Discussion section, the last part of the standard IMRD structure for a journal article. The Discussion section, as mentioned in chapter 4, can stand alone or can be part of a combined Results and Discussion (R&D) section. In either case, it serves the same major purpose: to interpret the results of the study. In this chapter, we analyze excerpts from various Discussion sections, including those that accompany results presented in chapter 4 (excerpts 4B–4G). Upon completion of this chapter, you should be able to do the following: ■ Organize a Discussion section following the major moves ■ Interpret your results (but avoid overinterpretation) ■ Describe the greater importance of your findings ■ Follow appropriate writing conventions As you work through this chapter, you will write a Discussion section for your own paper. The Writing on Your Own tasks throughout the chapter will guide you step by step as you do the following: 5A Read the literature 5B Prepare to write 5C Draft your Discussion section 5D Practice peer review 5E Fine-tune your Discussion section In the Discussion section of a journal article, authors interpret their data, address why and how questions (e.g., Why was the reaction faster? How did the mechanism proceed?), and, ultimately, extend their findings to a larger context (e.g., What value will these findings have to the scientific community?). Ideally, the Discussion section explains the story revealed by the data, postulates reasons for the observed behaviors, and furthers our fundamental understanding of the underlying science. Although interpretation is the primary goal of the Discussion section, authors must be careful not to overinterpret their data, misinterpret their results, overstate their assumptions, or stray too far from scientific evidence. The excerpts selected for this chapter illustrate ways to avoid these pitfalls. Similarly, the excerpts illustrate that the language of the Discussion section is typified by restraint and understatement. Such words as fact, truth, and prove are rarely used in a Discussion section. Hedging words, such as theory and evidence, are much more common, as are such verbs as appear, indicate, seem, and suggest.


Author(s):  
Marin S Robinson ◽  
Fredricka L Stoller ◽  
Molly Constanza-Robinson ◽  
James K Jones

In this chapter, we focus on writing a Methods section for a journal-quality paper. We begin with the Methods section because this is the section that many chemists write first, in part because this section describes what they know best: the procedures they have repeated (many times) to conduct their work. Moreover, most research groups use similar methodologies for several years; hence, previously written Methods sections can serve as models for writing new Methods sections. Together, these factors make the Methods section one of the easier sections to write and an excellent place to begin our writing instruction. By the end of this chapter, you will be able to do the following: ■ Know how to address the intended audience of a Methods section ■ Recognize which details to include and exclude from a Methods section ■ Organize a Methods section following standard moves ■ Use capitalization, abbreviations, and parentheses appropriately ■ Format numbers and units correctly ■ Use verb tense and voice in conventional manners As you work through the chapter, you will write a Methods section for your own paper. The Writing on Your Own tasks throughout the chapter will guide you step by step as you do the following: 3A Read the literature 3B Describe materials 3C Describe experimental methods 3D Describe numerical methods 3E Practice peer review 3F Fine-tune your Methods section The purpose of the Methods section is to address how a particular work was conducted. Relevant information about instrumentation and experimental and/ or numerical procedures is described. The goal is to describe the information in enough detail that an expert (not a novice) could repeat the work. Usually, this section is formally called, for example, Materials and Methods or Experimental Section, but for brevity, we call it simply the Methods section. Many of you have written a Methods section previously for a college-level chemistry course. Thus, we begin with an exercise to test your current knowledge about writing a Methods section.


Author(s):  
Marin S Robinson ◽  
Fredricka L Stoller ◽  
Molly Constanza-Robinson ◽  
James K Jones

In this chapter, we introduce you to formatting conventions for citations and references. Writers are obligated to cite others’ works that have significantly influenced or are relevant to their own work. It goes without saying that to include another’s original ideas without proper acknowledgment is plagiarism. Consequently, this stage of the writing process is critical both professionally and ethically. Although citations and references are inextricably linked, for clarity we deal with them separately. By the end of the chapter, you will be able to do the following: ■ Know what information should be cited ■ Know what information need not be cited ■ Use in-text citations appropriately ■ Recognize different reference formats (numerical and alphabetical) ■ Determine the appropriate reference format for your work Two Citing on Your Own tasks will guide you in preparing proper citations and references as you do the following: 17A Finalize citations 17B Compile and format references The seriousness of properly compiling and formatting citations and references is predictably emphasized in Information for Authors documents. The excerpts below serve as vital reminders of the importance of checking relevant guidelines before finalizing citations and references in your written work: Authors should be judicious in citing the literature; unnecessarily long lists of references should be avoided. (Author Information, J. Org. Chem. 2007, 72, 16A) The accuracy and completeness of the references are the authors’ responsibility. (Authors’ Guide, Anal. Chem. 2007, 79, 390 Avoid references to works that have not been peer-reviewed. (Instructions to Authors, Environ. Sci. Technol. 2007, 30) The citation of references in text . . . varies widely from journal to journal and publisher to publisher. . . . Authors are encouraged to check the author guidelines for a specific publication to find information on citing references. (The ACS Style Guide: Coghill and Garson, 2006) Most authors attend to citations and references when their work is nearly complete; useful reminders may be inserted into the text as they write—such as “cite Kopinski here” or “add ref”—but properly formatted citations and references are often added in the last stages of writing.


Author(s):  
Marin S Robinson ◽  
Fredricka L Stoller ◽  
Molly Constanza-Robinson ◽  
James K Jones

This chapter focuses on general formatting guidelines for three commonly used graphics in chemistry writing: figures, tables, and schemes. The major purposes and uses for each graphic are described, and common formatting expectations are shared. Before-correction and after-correction examples are used to identify common formatting errors and ways to correct them. Each section of the chapter ends with a table of useful guidelines. By the end of the chapter, you will be able to do the following: ■ Know when it is appropriate to include a figure, table, or scheme ■ Recognize common formatting mistakes in figures, tables, and schemes ■ Format figures, tables, and schemes in appropriate and conventional ways As you work through the chapter, you will format your own graphic, guided by the Formatting on Your Own task at the end of the chapter. Graphics, in combination with the text, allow authors to communicate complex information efficiently. When done properly, text and graphics work together, reinforcing each other without duplicating information. Like the text, graphics must follow formatting conventions. In this chapter, we call your attention to some common formatting practices. Of course, we cannot address all of the formatting practices in chemistry, nor can we anticipate how these conventions will change over time. Thus, use this chapter for basic formatting information and for insights into the many details involved in a properly formatted graphic. As always, consult The ACS Style Guide and your targeted journal’s Information for Authors for more detailed and current information. Authors use figures (e.g., graphs, illustrations, photographs) to display scientific information. Examples of figures are included throughout the textbook, for instance, an ion source (excerpt 3S), a comet assay (excerpt 4E), a chromatogram (excerpt 9F), and an illustration of hydrogel adsorption (excerpt 131). Figures are numbered consecutively throughout a paper (Figure 1, Figure 2, etc.) and mentioned by name and number in text preceding the figure. Although many figure types exist, by far the most common is the graph. Because of their frequency, we devote this section of the chapter solely to formatting graphs; however, the guidelines presented are applicable to many other figure types as well.


Author(s):  
Marin S Robinson ◽  
Fredricka L Stoller ◽  
Molly Constanza-Robinson ◽  
James K Jones

In this module, we focus on writing a research proposal, a document written to request financial support for an ongoing or newly conceived research project. Like the journal article (module 1), the proposal is one of the most important and most utilized writing genres in chemistry. Chemists employed in a wide range of disciplines including teaching (high school through university), research and technology, the health professions, and industry all face the challenge of writing proposals to support and sustain their scholarly activities. Before we begin, we remind you that there are many different ways to write a successful proposal—far too many to include in this textbook. Our goal is not to illustrate all the various approaches, but rather to focus on a few basic writing skills that are common to many successful proposals. These basics will get you started, and with practice, you can adapt them to suit your individual needs. After reading this chapter, you should be able to do the following: ■ Describe different types of funding and funding agencies ■ Explain the purpose of a Request for Proposals (RFP) ■ Understand the importance of addressing need, intellectual merit, and broader impacts in a research proposal ■ Identify the major sections of a research proposal ■ Identify the main sections of the Project Description Toward the end of the chapter, as part of the Writing on Your Own task, you will identify a topic for the research proposal that you will write as you work through this module. Consistent with the read-analyze-write approach to writing used throughout this textbook, this chapter begins with an excerpt from a research proposal for you to read and analyze. Excerpt 11A is taken from a proposal that competed successfully for a graduate fellowship offered by the Division of Analytical Chemistry of the American Chemical Society (ACS). As is true for nearly all successful proposals, the principal investigator (PI) wrote this proposal in response to a set of instructions. We have included the instructions with the excerpt so that you can see for yourself how closely she followed the proposal guidelines.


Author(s):  
Marin S Robinson ◽  
Fredricka L Stoller ◽  
Molly Constanza-Robinson ◽  
James K Jones

The purpose of this chapter is to help you design a poster that is visually appealing. Specific attention is paid to poster layout, font, and color. These design elements are illustrated with posters that we have created using the text introduced in chapter 9. Of course, what makes a poster attractive is (at least in part) a matter of taste, and many new design features will likely gain (and lose) popularity in the next decade. We cannot anticipate these changes; hence, we focus on a few basic principles of poster design that are likely to hold true over time. The guiding principle is to present your science in a way that is clear, crisp, and uncluttered. By the end of this chapter, you will be able to do the following: ■ Select the most appropriate layout for your poster ■ Select the font and font attributes for your poster ■ Select the color scheme for your poster The Designing on Your Own activities throughout the chapter will guide you in preparing your poster as you do the following: 10A Select a poster layout 10B Choose a font and font size 10C Add color and artwork 10D Finalize your poster Although the focus of this chapter is on visual appeal, a good-looking poster is not a substitute for good science. Viewers visit your poster to learn about your science, not the latest trends in graphic design. Therefore, conservative, but effective, use of design elements is preferred over flashy, distracting design. Commonly used graphic design elements, such as photos, backgrounds, shadowing of text, and “artsy” fonts can dramatically enhance the appeal and clarity of a poster, but if used carelessly, they can turn the poster into a scattered and confusing mess. The goal is to use your sense of aesthetics for color and your creative energies to communicate your science and to make the poster inviting, accessible, and memorable for your audience. Not long ago, a “poster” consisted of 8–12 sheets of paper cut and pasted onto individual pieces of colored construction paper.


Author(s):  
Marin S Robinson ◽  
Fredricka L Stoller ◽  
Molly Constanza-Robinson ◽  
James K Jones

Congratulations! If you are reading this chapter, you are likely preparing a poster for a scientific conference. This means that your conference abstract was accepted and that you have been invited to give a poster presentation. In this chapter, we focus on the various sections of the poster and how to write them. In chapter 10, we highlight the visual attributes of the poster (layout, font size, color schemes, etc.). By the end of this chapter, you will be able to do the following: ■ Address the correct audience in your poster ■ Write the major sections of your poster ■ Use bulleted lists and graphics appropriately ■ Add title, references, and acknowledgments to your poster As you work through the chapter, you will compose the text and graphics for your own poster. The Writing on Your Own tasks throughout this chapter guide you step by step as you do the following: 9A Prepare to write 9B Draft your poster Methods section 9C Draft your poster Results section 9D Draft your poster Discussion section 9E Draft your poster Introduction section 9F Add your poster title, author list, acknowledgments, and references We begin by asking you to read and analyze a poster that we created based on the journal article by Vesely et al. (2003) regarding aldehydes in beer. Journal articles usually include far too much information for a single poster; hence, in the poster in figure 9.1, we include only a fraction of the information presented in the full journal article. (For the full article, see excerpts 3A, 4A, 6A, and 7A.) The hypothetical poster focuses on what Vesely’s group might have presented early in their research project, specifically, the methods that they developed to analyze their samples. A black-and-white version of the poster is presented in figure 9.1; a full-color version of the poster is available on the Write Like a Chemist Web site. Exercise 9.1 guides you in the analysis of the poster and lays the groundwork for the rest of the chapter.


Sign in / Sign up

Export Citation Format

Share Document