Evaluation of Application of High Quality Recycled Fine Aggregate Manufacturing System by the Drying Specific Gravity Separation Method

2005 ◽  
Vol 17 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Moo-Han Kim ◽  
Jae-Hwan Kim ◽  
Yong-Ro Kim ◽  
Chul-Sung Na
Author(s):  
Kamil Krzywiński ◽  
Łukasz Sadowski ◽  
Damian Stefaniuk ◽  
Aleksei Obrosov ◽  
Sabine Weiß

AbstractNowadays, the recycled fine aggregate sourced from construction and demolition waste is not frequently used in manufacturing of epoxy resin coatings. Therefore, the main novelty of the article is to prepare green epoxy resin coatings modified with recycled fine aggregate in a replacement ratio of natural fine aggregate ranged from 20 to 100%. The microstructural properties of the aggregates and epoxy resin were analyzed using micro-computed tomography, scanning electron microscopy and nanoindentation. The macroscopic mechanical properties were examined using pull-off strength tests. The highest improvement of the mechanical properties was observed for epoxy resin coatings modified with 20% of natural fine aggregate and 80% of recycled fine aggregate. It has been found that even 100% of natural fine aggregate can be successfully replaced using the recycled fine aggregate with consequent improvement of the pull-off strength of analyzed epoxy resin coatings. In order to confirm the assumptions resulting from the conducted research, an original analytical and numerical failure model proved the superior behavior of modified coating was developed.


2017 ◽  
Vol 69 (24) ◽  
pp. 1288-1295 ◽  
Author(s):  
Ravi Kumar ◽  
Subash Chandra Bose Gurram ◽  
Ashwani Kumar Minocha

2012 ◽  
Vol 509 ◽  
pp. 119-122
Author(s):  
Wei Zhou ◽  
Ling Huan Lu ◽  
Zhen Li

The impact of recycled fine aggregate and powder on the mechanics and thermal performance of recycled concrete hollow blocks was discussed in this paper. The results showed that 30% recycled fine aggregate and powder have slight affect on the strength of recycled concrete hollow blocks. But the strength reduced significantly when the replacement is above 50%. The impact of recycled fine aggregate and powder on the performance of concrete hollow blocks with high strength grade is notable . The heat transfer coefficient of recycled concrete hollow blocks with 30% recycled fine aggregate and powder was equivalently to ordinary concrete hollow blocks.


2021 ◽  
Vol 8 (7) ◽  
pp. 155-163
Author(s):  
Eduardo Dalla Costa Silva ◽  
Dykenlove Marcelin ◽  
Douglas Guedes Batista Torres ◽  
Thiago Guerra

Author(s):  
Lutz Lackner ◽  
Mats Larsson

In the production of green parts from powder, there is unavoidable slight deviation in the die filling, even when high-quality powders are used. The quantity of powder in the die varies and thus affects the weight of the compact. This filling variation results in variation of the pressing force, and thus influences the part geometry. The development of the DORST Netshape® System was conceived as an autonomous manufacturing system in order to compensate for these effects. Based on the Dorst Industry 4.0 innovations for part weight measuring immediately after pressing in combination with a laser dimension measuring system, this technology package attempts to reach enhanced precision and consistency in production. The paper presents results from various trials that show the capability of this new system, designed to improve the quality of pressed parts.


Author(s):  
Adriane Pczieczek ◽  
Adilson Schackow ◽  
Carmeane Effting ◽  
Itamar Ribeiro Gomes ◽  
Talita Flores Dias

This study aims to evaluate the application of discarded tire rubber waste and Expanded Polystyrene (EPS) in mortar. For mortars fine aggregate was replaced by 10%, 20% and 30% of rubber and, 7.5% and 15% of EPS. We have verified the consistency, density, amount of air and water retentitivity in fresh state. The compressive strength, water absorption, voids ratio and specific gravity have been also tested in hardened state. The application of rubber powder contributed to the increase in entrained air content and in reducing specific gravity, as well as reducing compressive strength at 28 days. The addition of EPS also contributed to the increase of workability, water absorption and voids ratio, and decreased density and compressive strength when compared to the reference mortar. The use of rubber waste and EPS in mortar made the material more lightweight and workable. The mortars mixtures containing 10% rubber and 7.5% EPS showed better results.


2016 ◽  
Vol 30 (4) ◽  
pp. 2841-2845 ◽  
Author(s):  
Zhijun Zhang ◽  
Xiaoxia Yang ◽  
Hongwei Jia ◽  
Hanyu Zhang

Sign in / Sign up

Export Citation Format

Share Document