scholarly journals Historical evidence of faulting in Eastern Anatolia and Northern Syria

1995 ◽  
Vol 38 (3-4) ◽  
Author(s):  
N. N. Ambraseys ◽  
C. P. Melville

Historical data show that like the North Anatolian fault zone, which was delineated by a series of earthquakes during this century from east to west, so was the conjugate Eastern Anatolian fault zone delineated from the northeast to the southwest by a succession of large earthquakes in earlier times, with a major event at its junction with the Dead Sea fault system. This event was associated with surface faulting and occurred in a region seismically quiescent for nearly two centuries.

2018 ◽  
Author(s):  
George Taylor ◽  
Sebastian Rost ◽  
Gregory Houseman ◽  
Gregor Hillers

Abstract. We use observations of surface waves in the ambient noise field recorded at a dense seismic array to image the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike slip fault system extending ~ 1200 km across northern Turkey and poses a high level of seismic hazard, particularly to the city of Istanbul. Assuming isotropy, we obtain maps of phase velocity variation using surface wave tomography applied to Rayleigh and Love waves and construct high resolution images of S-wave velocity in the upper 10 km of a 70 km by 30 km region around Lake Sapanca. We observe low S-wave velocities (< 2.5 km s−1) associated with the Adapazari and Pamukova sedimentary basins, as well as the northern branch of the NAFZ. In the Armutlu Block, between the two major branches of the NAFZ, we detect higher velocities (> 3.2 km s−1) associated with a shallow crystalline basement. We measure azimuthal anisotropy in our phase velocity observations, with the fast direction seeming to align with the direction of maximum extension for the region (~ 45°). The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic units. Our results suggest that the development of the NAFZ has exploited this pre-existing contrast in physical properties.


Solid Earth ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 363-378 ◽  
Author(s):  
George Taylor ◽  
Sebastian Rost ◽  
Gregory A. Houseman ◽  
Gregor Hillers

Abstract. We use observations of surface waves in the ambient noise field recorded at a dense seismic array to image the North Anatolian Fault zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip fault system extending ∼1200 km across northern Turkey that poses a high level of seismic hazard, particularly to the city of Istanbul. We obtain maps of phase velocity variation using surface wave tomography applied to Rayleigh and Love waves and construct high-resolution images of S-wave velocity in the upper 10 km of a 70 × 30 km region around Lake Sapanca. We observe low S-wave velocities (<2.5 km s−1) associated with the Adapazari and Pamukova sedimentary basins, as well as the northern branch of the NAFZ. In the Armutlu Block, between the two major branches of the NAFZ, we image higher velocities (>3.2 km s−1) associated with a shallow crystalline basement. We measure azimuthal anisotropy in our phase velocity observations, with the fast direction seeming to align with the strike of the fault at periods shorter than 4 s. At longer periods up to 10 s, the fast direction aligns with the direction of maximum extension for the region (∼45∘). The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic units. Our results support the conclusion that the development of the NAFZ has exploited this pre-existing contrast in physical properties.


2020 ◽  
Vol 134 ◽  
pp. 101694 ◽  
Author(s):  
Gizem Izgi ◽  
Tuna Eken ◽  
Peter Gaebler ◽  
Tom Eulenfeld ◽  
Tuncay Taymaz

1991 ◽  
Vol 193 (4) ◽  
pp. 359-368 ◽  
Author(s):  
N. Oshiman ◽  
M.K. Tunçer ◽  
Y. Honkura ◽  
S. Bariş ◽  
O. Yazici ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document