scholarly journals RSTVOLC implementation on MODIS data for monitoring of thermal volcanic activity

2011 ◽  
Vol 54 (5) ◽  
Author(s):  
Teodosio Lacava ◽  
Francesco Marchese ◽  
Nicola Pergola ◽  
Valerio Tramutoli ◽  
Irina Coviello ◽  
...  

An optimized configuration of the Robust Satellite Technique (RST) approach was developed within the framework of the ‘LAVA’ project. This project is funded by the Italian Department of Civil Protection and the Italian Istituto Nazionale di Geofisica e Vulcanologia, with the aim to improve the effectiveness of satellite monitoring of thermal volcanic activity. This improved RST configuration, named RSTVOLC, has recently been implemented in an automatic processing chain that was developed to detect hot-spots in near real-time for Italian volcanoes. This study presents the results obtained for the Mount Etna eruption of July 14-24, 2006, using the Moderate Resolution Imaging Spectroradiometer (MODIS) data. To better assess the operational performance, the RSTVOLC results are also discussed in comparison with those obtained by MODVOLC, a well-established, MODIS-based algorithm for hot-spot detection that is used worldwide.

2017 ◽  
Vol 4 (2) ◽  
pp. 286
Author(s):  
Jajang Nuryana ◽  
I Gede Hendrawan ◽  
Widiastuti Karim

National Ocean Atmospheric Administrations (NOAA) by the program coral reef Watch (CRW) has developed a method to estimate the potential of coral bleaching using Sea Surface Temperature (SST). The products are hot spot (HS) and degree heating week (DHW). HS is the SST 1°C (SSTL?1) above normal and DHW is the length of HS inhabits a place. The CRW product do not provided detail informations because it has a lower resolution. It is need a satellite image with a higher resolution to provide better informations. One of the satellite images that can be used is Moderate Resolution Imaging Spectroradiometer (MODIS) with a spatial resolution of 1 km. The purpose of this study was to know HS and DHW distribution patterns and status of coral bleaching in Bali waters seen from the analysis of HS and DHW. MODIS data is used daily, then do mosaicing process to get a weekly SPL (8 daily) and the monthly SST. Monthly SPL normally used to get maximum montly mean (MMM). HS obtained from the difference between 8 daily weekly SST and SST normal (MMM).).Location bleaching based on data Coral Triangle Center (CTC) and coralwatch.org.  SST results revealed difference of SPL in 2015 and 2016 amounted to 1.48°C. Highest DHW in Bali Hai, Nusa Penida is 10 465° C-weeks in April 2016. Based on the value HS and DHW coral reefs in Bali waters threatened bleaching level Alert 1 and Alert level 2.


2008 ◽  
Vol 112 (5) ◽  
pp. 2643-2655 ◽  
Author(s):  
Kamel Soudani ◽  
Guerric le Maire ◽  
Eric Dufrêne ◽  
Christophe François ◽  
Nicolas Delpierre ◽  
...  

2004 ◽  
Vol 39 ◽  
pp. 223-230 ◽  
Author(s):  
Ian C. Brown ◽  
Ted A. Scambos

AbstractWe use satellite images to track seasonal and interannual variations in blue-ice extent over the past 30 years near Byrd Glacier on the East Antarctic plateau. The study areas have low slope and few nearby nunataks, which may increase their climate sensitivity. A threshold-based algorithm sensitive to snow grain-size is used to analyze 56 Moderate Resolution Imaging Spectroradiometer (MODIS) images over three recent summer seasons. Seasonal blue-ice exposure grows rapidly in late spring, and peaks by late December. Exposure is relatively constant between late December and mid-January, then declines in February. We interpret this cycle as due to removal and re-accumulation of patchy snow. Interannual changes in blue-ice area may be estimated by tracking the near-constant summer maximum extent period. Fifteen mid-summer Landsat images, spanning 1974–2002, were analyzed to determine long-term variations. Interannual area changes are 10–30%; however, the MODIS data revealed that the exposed blue-ice area can be sharply reduced for up to 2 weeks after a snowfall event; and in the 2001/02 season, patchy snow cover persisted for the entire summer. The combination of MODIS seasonal and Landsat interannual data indicates that blue-ice areas can be climate-sensitive. The strong feedback between snow cover and surface energy balance implies that blue-ice areas could rapidly decrease due to climate-related increases in snowfall or reduced ablation.


Author(s):  
Yan Zhuang ◽  
Danlu Chen ◽  
Ruiyuan Li ◽  
Ziyue Chen ◽  
Jun Cai ◽  
...  

In recent years, particulate matter (PM) pollution has increasingly affected public life and health. Therefore, crop residue burning, as a significant source of PM pollution in China, should be effectively controlled. This study attempts to understand variations and characteristics of PM10 and PM2.5 concentrations and discuss correlations between the variation of PM concentrations and crop residue burning using ground observation and Moderate Resolution Imaging Spectroradiometer (MODIS) data. The results revealed that the overall PM concentration in China from 2013 to 2017 was in a downward tendency with regional variations. Correlation analysis demonstrated that the PM10 concentration was more closely related to crop residue burning than the PM2.5 concentration. From a spatial perspective, the strongest correlation between PM concentration and crop residue burning existed in Northeast China (NEC). From a temporal perspective, the strongest correlation usually appeared in autumn for most regions. The total amount of crop residue burning spots in autumn was relatively large, and NEC was the region with the most intense crop residue burning in China. We compared the correlation between PM concentrations and crop residue burning at inter-annual and seasonal scales, and during burning-concentrated periods. We found that correlations between PM concentrations and crop residue burning increased significantly with the narrowing temporal scales and was the strongest during burning-concentrated periods, indicating that intense crop residue burning leads to instant deterioration of PM concentrations. The methodology and findings from this study provide meaningful reference for better understanding the influence of crop residue burning on PM pollution across China.


Author(s):  
Eiji Nunohiro ◽  
◽  
Kei Katayama ◽  
Kenneth J. Mackin ◽  
Jong Geol Park ◽  
...  

Tokyo University of Information Sciences receives MODIS (Moderate Resolution Imaging Spectroradiometer) data from NASA’s Terra and Aqua satellites, and provides the processed data to universities and research institutes as part of the academic frontier project. This paper considers the utilization of MODIS data for a system to search for fire regions in forests and fields. For the search system to be effective, the system must be able to extract the location, range and distribution of fires in forests and fields from a large scale image database quickly with high accuracy. In order to achieve high search response time and to improve the accuracy of the analysis, we propose a forest and field fire search system which implements a) a parallel distributed system configuration using multiple PC clusters, and b) MOD02, MOD03 and MOD09 process levels of MODIS data for input data which provide higher resolution and more accurate readings than the standard MOD14 process level data.


2011 ◽  
Vol 115 (6) ◽  
pp. 1595-1601 ◽  
Author(s):  
Zhuosen Wang ◽  
Crystal B. Schaaf ◽  
Philip Lewis ◽  
Yuri Knyazikhin ◽  
Mitchell A. Schull ◽  
...  

2009 ◽  
Vol 10 (10) ◽  
pp. 1509-1522 ◽  
Author(s):  
Hua-sheng Sun ◽  
Jing-feng Huang ◽  
Alfredo R. Huete ◽  
Dai-liang Peng ◽  
Feng Zhang

2021 ◽  
Vol 18 (2) ◽  
pp. 621-635
Author(s):  
Jan Pisek ◽  
Angela Erb ◽  
Lauri Korhonen ◽  
Tobias Biermann ◽  
Arnaud Carrara ◽  
...  

Abstract. Information about forest background reflectance is needed for accurate biophysical parameter retrieval from forest canopies (overstory) with remote sensing. Separating under- and overstory signals would enable more accurate modeling of forest carbon and energy fluxes. We retrieved values of the normalized difference vegetation index (NDVI) of the forest understory with the multi-angular Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo data (gridded 500 m daily Collection 6 product), using a method originally developed for boreal forests. The forest floor background reflectance estimates from the MODIS data were compared with in situ understory reflectance measurements carried out at an extensive set of forest ecosystem experimental sites across Europe. The reflectance estimates from MODIS data were, hence, tested across diverse forest conditions and phenological phases during the growing season to examine their applicability for ecosystems other than boreal forests. Here we report that the method can deliver good retrievals, especially over different forest types with open canopies (low foliage cover). The performance of the method was found to be limited over forests with closed canopies (high foliage cover), where the signal from understory becomes too attenuated. The spatial heterogeneity of individual field sites and the limitations and documented quality of the MODIS BRDF product are shown to be important for the correct assessment and validation of the retrievals obtained with remote sensing.


Sign in / Sign up

Export Citation Format

Share Document