scholarly journals The absolute order on the hyperoctahedral group

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Myrto Kallipoliti

International audience The absolute order on the hyperoctahedral group $B_n$ is investigated. It is shown that every closed interval in this order is shellable, those closed intervals which are lattices are characterized and their zeta polynomials are computed. Moreover, using the notion of strong constructibility, it is proved that the order ideal generated by the Coxeter elements of $B_n$ is homotopy Cohen-Macaulay and the Euler characteristic of the order complex of the proper part of this ideal is computed. Finally, an example of a non Cohen-Macaulay closed interval in the absolute order on the group $D_4$ is given and the closed intervals of $D_n$ which are lattices are characterized. Nous étudions l'ordre absolu sur le groupe hyperoctahédral $B_n$. Nous montrons que chaque intervalle fermé de cet ordre est shellable, caractérisons les treillis parmi ces intervalles et calculons les polynômes zêta de ces derniers. De plus, en utilisant la notion de constructibilité forte, nous prouvons que l'idéal engendré par les éléments de Coxeter de $B_n$ est Cohen-Macaulay pour l'homotopie, et nous calculons la caractéristique d'Euler du complexe associé à cet idéal. Pour finir, nous exhibons un exemple d'intervalle fermé non Cohen-Macaulay dans l'ordre absolu du groupe $D_4$, et caractérisons les intervalles fermés de $D_n$ qui sont des treillis.

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Eric Clark ◽  
Richard Ehrenborg

International audience Motivated by the classical Frobenius problem, we introduce the Frobenius poset on the integers $\mathbb{Z}$, that is, for a sub-semigroup $\Lambda$ of the non-negative integers $(\mathbb{N},+)$, we define the order by $n \leq_{\Lambda} m$ if $m-n \in \Lambda$. When $\Lambda$ is generated by two relatively prime integers $a$ and $b$, we show that the order complex of an interval in the Frobenius poset is either contractible or homotopy equivalent to a sphere. We also show that when $\Lambda$ is generated by the integers $\{a,a+d,a+2d,\ldots,a+(a-1)d\}$, the order complex is homotopy equivalent to a wedge of spheres. Motivé par le problème de Frobenius classique, nous introduisons l'ensemble partiellement ordonné de Frobenius sur les entiers $\mathbb{Z}$, c.à.d. que pour un sous-semigroupe $\Lambda$ de les entiers non-négatifs $(\mathbb{N},+)$ nous définissons l'ordre par $n \leq_{\Lambda} m$ si $m-n \in \Lambda$. Quand le $\Lambda$ est engendré par deux nombres $a$ et $b$, relativement premiers entre eux, nous montrons que le complexe des chaînes d'un intervalle quelconque dans l'ensemble partiellement ordonné de Frobenius est soit contractible soit homotopiquement équivalent à une sphère. Nous montrons aussi que dans le cas où $\Lambda$ est engendré par les entiers $\{a,a+d,a+2d,\ldots,a+(a-1)d\}$, le complexe des chaînes a le type de homotopie d'un bouquet de sphères.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
T. K. Petersen ◽  
L. Serrano

International audience We show that the set $R(w_0)$ of reduced expressions for the longest element in the hyperoctahedral group exhibits the cyclic sieving phenomenon. More specifically, $R(w_0)$ possesses a natural cyclic action given by moving the first letter of a word to the end, and we show that the orbit structure of this action is encoded by the generating function for the major index on $R(w_0)$. Nous montrons que l'ensemble $R(w_0)$ des expressions réduites pour l'élément le plus long du groupe hyperoctaédral présente le phénomène cyclique de tamisage. Plus précisément, $R(w_0)$ possède une action naturelle cyclique donnée par le déplacement de la première lettre d'un mot vers la fin, et nous montrons que la structure d'orbite de cette action est codée par la fonction génératrice pour l'indice majeur sur $R(w_0)$.


2010 ◽  
Vol 34 (2) ◽  
pp. 183-211 ◽  
Author(s):  
Myrto Kallipoliti

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Richard Ehrenborg ◽  
JiYoon Jung

International audience For each composition $\vec{c}$ we show that the order complex of the poset of pointed set partitions $Π ^• _{\vec{c}}$ is a wedge of $β\vec{c}$ spheres of the same dimensions, where $β\vec{c}$ is the number of permutations with descent composition ^$\vec{c}$. Furthermore, the action of the symmetric group on the top homology is isomorphic to the Specht module $S^B$ where $B$ is a border strip associated to the composition $\vec{c}$. We also study the filter of pointed set partitions generated by a knapsack integer partitions and show the analogous results on homotopy type and action on the top homology. Pour chaque composition $\vec{c}$ nous montrons que le complexe simplicial des chaînes de l'ensemble ordonné $Π ^• _{\vec{c}}$ des partitions pointées d'un ensemble est un bouquet de $β\vec{c}$ sphères de même dimension, où $β\vec{c}$ est le nombre de permutations ayant la composition de descentes $\vec{c}$. De plus, l'action du groupe symétrique sur le groupe d'homologie de degré maximum est isomorphe au module de Specht $S^B$ où $B$ est la bande frontalière associée à la composition $\vec{c}$. Nous étudions aussi le filtre des partitions pointées d'un ensemble, engendré par des partitions d'entiers de type "sac à dos'' et nous démontrons des résultats analogues pour le type d'homotopie et pour l'action sur le groupe d'homologie de degré maximum.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Jean-Gabriel Luque

International audience We investigate the homogeneous symmetric Macdonald polynomials $P_{\lambda} (\mathbb{X} ;q,t)$ for the specialization $t=q^k$. We show an identity relying the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$ and $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. As a consequence, we describe an operator whose eigenvalues characterize the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$. Nous nous intéressons aux propriétés des polynômes de Macdonald symétriques $P_{\lambda} (\mathbb{X} ;q,t)$ pour la spécialisation $t=q^k$. En particulier nous montrons une égalité reliant les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$ et $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. Nous en déduisons la description d'un opérateur dont les valeurs propres caractérisent les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Leonid Tolmatz

International audience The distribution function of the integral of the absolute value of the Brownian motion was expressed by L.Takács in the form of various series. In the present paper we determine the exact tail asymptotics of this distribution function. The proposed method is applicable to a variety of other Wiener functionals as well.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Kevin Dilks ◽  
T. Kyle Petersen ◽  
John R. Stembridge

International audience Let $W \ltimes L$ be an irreducible affine Weyl group with Coxeter complex $\Sigma$, where $W$ denotes the associated finite Weyl group and $L$ the translation subgroup. The Steinberg torus is the Boolean cell complex obtained by taking the quotient of $\Sigma$ by the lattice $L$. We show that the ordinary and flag $h$-polynomials of the Steinberg torus (with the empty face deleted) are generating functions over $W$ for a descent-like statistic first studied by Cellini. We also show that the ordinary $h$-polynomial has a nonnegative $\gamma$-vector, and hence, symmetric and unimodal coefficients. In the classical cases, we also provide expansions, identities, and generating functions for the $h$-polynomials of Steinberg tori. Nous considérons un groupe de Weyl affine irréductible $W \ltimes L$ avec complexe de Coxeter $\Sigma$, où $W$ désigne le groupe de Weyl fini associé et $L$ le sous-groupe des translations. Le tore de Steinberg est le complexe cellulaire Booléen obtenu comme le quotient de $\Sigma$ par $L$. Nous montrons que les $h$-polynômes, ordinaires et de drapeaux, du tore de Steinberg (sans la face vide) sont des fonctions génératrices sur $W$ pour une statistique de type descente, étudiée en premier lieu par Cellini. Nous montrons également qu'un $h$-polynôme ordinaire possède un $\gamma$-vecteur positif, et par conséquent, a des coefficients symétriques et unimodaux. Dans les cas classiques, nous donnons également des développements, des identités et des fonctions génératrices pour les $h$-polynômes des tores de Steinberg.


2018 ◽  
Vol Volume 7, Number 1 (Research articles) ◽  
Author(s):  
Joëlle Coutaz ◽  
James L. Crowley

International audience We present an experience with the development and evaluation of AppsGate, an ecosystem for the home that can be programmed by end-users. We show the benefits from using the homes of the project team members as real-life living-labs. In particular, we discuss the first person perspective experience as an effective way to conduct longitudinal experiments in real world settings. We conclude that a programmable habitat is desirable provided that attention cost is minimized Cet article présente un retour d’expérience avec la mise en oeuvre et l’évaluation d’AppsGate, un écosystème domestique programmable par l’habitant. Nous montrons l’apport de l’utilisation des domiciles de membres du projet tout au long du processus de développement, et notamment l’intérêt de « vivre avec » comme technique d’expérimentation longitudinale


Sign in / Sign up

Export Citation Format

Share Document