scholarly journals An algorithm which generates linear extensions for a generalized Young diagram with uniform probability

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Kento Nakada ◽  
Shuji Okamura

International audience The purpose of this paper is to present an algorithm which generates linear extensions for a generalized Young diagram, in the sense of D. Peterson and R. A. Proctor, with uniform probability. This gives a proof of a D. Peterson's hook formula for the number of reduced decompositions of a given minuscule elements. \par Le but de ce papier est présenter un algorithme qui produit des extensions linéaires pour un Young diagramme généralisé dans le sens de D. Peterson et R. A. Proctor, avec probabilité constante. Cela donne une preuve de la hook formule d'un D. Peterson pour le nombre de décompositions réduites d'un éléments minuscules donné.

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Kento Nakada

International audience \textbfAbstract. The purpose of this paper is to present an algorithm which generates linear extensions for a non-simply-laced d-complete poset with uniform probability. ≠wline Le but de ce papier est prèsenter un algorithme qui produit des extensions linèaires pour une non-simply-laced d-complete poset avec probabilitè constante.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Kento Nakada

International audience The purpose of this paper is to present the $q$-hook formula of Gansner type for a generalized Young diagram in the sense of D. Peterson and R. A. Proctor. This gives a far-reaching generalization of a hook length formula due to J. S. Frame, G. de B. Robinson, and R. M. Thrall. Furthurmore, we give a generalization of P. MacMahon's identity as an application of the $q$-hook formula. Le but de ce papier est présenter la $q$-hook formule de type Gansner pour un Young diagramme généralisé dans le sens de D. Peterson et R. A. Proctor. Cela donne une généralisation de grande envergure d'une hook length formule dû à J. S. Frame, G. de B. Robinson, et R. M. Thrall. Furthurmore, nous donnons une généralisation de l'identité de P. MacMahon comme une application de la $q$-hook formule.


2013 ◽  
Vol Vol. 15 no. 2 (Combinatorics) ◽  
Author(s):  
Adrien Boussicault

Combinatorics International audience We consider the family of rational functions ψw= ∏( xwi - xwi+1 )-1 indexed by words with no repetition. We study the combinatorics of the sums ΨP of the functions ψw when w describes the linear extensions of a given poset P. In particular, we point out the connexions between some transformations on posets and elementary operations on the fraction ΨP. We prove that the denominator of ΨP has a closed expression in terms of the Hasse diagram of P, and we compute its numerator in some special cases. We show that the computation of ΨP can be reduced to the case of bipartite posets. Finally, we compute the numerators associated to some special bipartite graphs as Schubert polynomials.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Sabine Beil

International audience Triangular fully packed loop configurations (TFPLs) came up in the study of fully packed loop configurations on a square (FPLs) corresponding to link patterns with a large number of nested arches. To a TFPL is assigned a triple $(u,v;w)$ of $01$-words encoding its boundary conditions. A necessary condition for the boundary $(u,v;w)$ of a TFPL is $\lvert \lambda(u) \rvert +\lvert \lambda(v) \rvert \leq \lvert \lambda(w) \rvert$, where $\lambda(u)$ denotes the Young diagram associated with the $01$-word $u$. Wieland gyration, on the other hand, was invented to show the rotational invariance of the numbers $A_\pi$ of FPLs corresponding to a given link pattern $\pi$. Later, Wieland drift was defined as the natural adaption of Wieland gyration to TFPLs. The main contribution of this article is a linear expression for the number of TFPLs with boundary $(u,v;w)$ where $\lvert \lambda (w) \rvert - \lvert\lambda (u) \rvert - \lvert \lambda (v)\rvert \leq 2$ in terms of numbers of stable TFPLs that is TFPLs invariant under Wieland drift. These stable TFPLs have boundary $(u^{+},v^{+};w)$ for words $u^{+}$ and $v^{+}$ such that $\lambda (u) \subseteq \lambda (u^{+})$ and $\lambda (v) \subseteq \lambda (v^{+})$. Les configurations de boucles compactes triangulaires (”triangular fully packed loop configurations”, ou TFPLs) sont apparues dans l’étude des configurations de boucles compactes dans un carré (FPLs) correspondant à des motifs de liaison avec un grand nombre d’arcs imbriqués. À chaque TPFL on associe un triplet $(u,v;w)$ de mots sur {0,1}, qui encode ses conditions aux bords. Une condition nécessaire pour le bord $(u,v;w)$ d’un TFPL est $\lvert \lambda(u) \rvert +\lvert \lambda(v) \rvert \leq \lvert \lambda(w) \rvert$, où $\lambda(u)$ désigne le diagramme de Young associé au mot $u$. D’un autre côté, la giration de Wieland a été inventée pour montrer l’invariance par rotation des nombres $A_\pi$ de FPLs correspondant à un motif de liaison donné $\pi$. Plus tard, la déviation de Wieland a été définie pour adapter de manière naturelle la giration de Wieland aux TFPLs. La contribution principale de cet article est une expression linéaire pour le nombre de TFPLs de bord $(u,v;w)$, où $\lvert \lambda (w) \rvert - \lvert\lambda (u) \rvert - \lvert \lambda (v)\rvert \leq 2$, en fonction des nombres de TFPLs stables, <i>i.e</i>., les TFPLs invariants par déviation de Wieland. Ces TFPLs stables ont pour bord $(u^{+},v^{+};w)$, avec $u^{+}$ et $v^{+}$ des mots tels que $\lambda (u) \subseteq \lambda (u^{+})$ et $\lambda (v) \subseteq \lambda (v^{+})$.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Maciej Dolega ◽  
Valentin Féray ◽  
Piotr Sniady

International audience Free cumulants are nice and useful functionals of the shape of a Young diagram, in particular they give the asymptotics of normalized characters of symmetric groups $\mathfrak{S}(n)$ in the limit $n \to \infty$. We give an explicit combinatorial formula for normalized characters of the symmetric groups in terms of free cumulants. We also express characters in terms of Frobenius coordinates. Our formulas involve counting certain factorizations of a given permutation. The main tool are Stanley polynomials which give values of characters on multirectangular Young diagrams. Les cumulants libres sont des fonctions agréables et utiles sur l'ensemble des diagrammes de Young, en particulier, ils donnent le comportement asymptotiques des caractères normalisés du groupe symétrique $\mathfrak{S}(n)$ dans la limite $n \to \infty$. Nous donnons une formule combinatoire explicite pour les caractères normalisés du groupe symétrique en fonction des cumulants libres. Nous exprimons également les caractères en fonction des coordonnées de Frobenius. Nos formules font intervenir le nombre de certaines factorisations d'une permutation donnée. L'outil principal est la famille de polynômes de Stanley donnant les valeurs des caractères sur les diagrammes de Young multirectangulaires.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Nathan Williams

International audience In this abstract, I will survey the story of two enumerative miracles that relate certain Coxeter-theoretic objects and other poset-theoretic objects. The first miracle relates reduced words and linear extensions, while the second may be thought of as relating group elements and order ideals. The purpose of this abstract is to use a conjecture from my thesis to present both miracles in the same light. Dans ce résumé, j’étudie l’histoire de deux miracles énumératifs qui relient certains objets de la théorie de Coxeter et d’autres objets de la théorie des posets. Le premier miracle relie des mots réduits et des extensions linéaires, tandis que le second relie des éléments du groupe et des idéaux d’ordre. Le but de ce résumé est d’utiliser une conjecture de ma thèse afin de présenter les deux miracles sous la même lumière.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Jessica Striker ◽  
Nathan Williams

International audience We present an equivariant bijection between two actions—promotion and rowmotion—on order ideals in certain posets. This bijection simultaneously generalizes a result of R. Stanley concerning promotion on the linear extensions of two disjoint chains and certain cases of recent work of D. Armstrong, C. Stump, and H. Thomas on noncrossing and nonnesting partitions. We apply this bijection to several classes of posets, obtaining equivariant bijections to various known objects under rotation. We extend the same idea to give an equivariant bijection between alternating sign matrices under rowmotion and under B. Wieland's gyration. Lastly, we define two actions with related orders on alternating sign matrices and totally symmetric self-complementary plane partitions. Nous prèsentons une bijection èquivariante entre deux actions—promotion et rowmotion—sur les idèaux d'ordre dans certaines posets. Cette bijection gènèralise simultanèment un rèsultat de R. Stanley concernant la promotion sur les extensions linèaire de deux cha\^ınes disjointes et certains cas des travaux rècents de D. Armstrong, C. Stump, et H. Thomas sur les partitions noncroisèes et nonembo\^ıtèes. Nous appliquons cette bijection à plusieurs classes de posets pour obtenir des bijections èquivariantes a des diffèrents objets connus sous la rotation. Nous gènèralisons la même idèe pour donnè une bijection èquivariante entre les matrices à signes alternants sous rowmotion et sous la gyration de B. Wieland. Finalement, nous dèfinissons deux actions avec des ordres similaires sur les matrices à signes alternants et les partitions plane totalement symètriques et autocomplèmentaires.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Alexander Garver ◽  
Jacob P. Matherne

International audience Exceptional sequences are certain ordered sequences of quiver representations. We use noncrossing edge-labeled trees in a disk with boundary vertices (expanding on T. Araya’s work) to classify exceptional sequences of representations of $Q$, the linearly ordered quiver with $n$ vertices. We also show how to use variations of this model to classify $c$-matrices of $Q$, to interpret exceptional sequences as linear extensions, and to give a simple bijection between exceptional sequences and certain chains in the lattice of noncrossing partitions. In the case of $c$-matrices, we also give an interpretation of $c$-matrix mutation in terms of our noncrossing trees with directed edges. Les suites exceptionnelles sont certaines suites ordonnées de représentations de carquois. Nous utilisons des arbres aux arêtes étiquetés et aux sommets dans le bord d’un disque (expansion sur le travail de T. Araya) pour classifier les suites exceptionnelles de représentations du carquois linéairement ordonné à $n$ sommets. Nous exploitons des variations de ce modèle pour classifier les $c$-matrices dudit carquois, pour interpréter les suites exceptionnelles comme des extensions linéaires, et pour donner une bijection élémentaire entre les suites exceptionnelles et certaines chaînes dans le réseau des partitions sans croisement. Dans le cas des $c$-matrices, nous donnons également une interprétation de la mutation des $c$-matrices en termes des arbres sans croisement aux arêtes orientés.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Cristina Ballantine

International audience Since every even power of the Vandermonde determinant is a symmetric polynomial, we want to understand its decomposition in terms of the basis of Schur functions. We investigate several combinatorial properties of the coefficients in the decomposition. In particular, I will give a recursive approach for computing the coefficient of the Schur function $s_μ$ in the decomposition of an even power of the Vandermonde determinant in $n+1$ variables in terms of the coefficient of the Schur function $s_λ$ in the decomposition of the same even power of the Vandermonde determinant in $n$ variables if the Young diagram of $μ$ is obtained from the Young diagram of $λ$ by adding a tetris type shape to the top or to the left. Comme toute puissance paire du déterminant de Vandermonde est un polynôme symétrique, nous voulons comprendre sa décomposition dans la base des fonctions de Schur. Nous allons étudier plusieurs propriétés combinatoires des coefficients de la décomposition. En particulier, nous allons donner une approche récursive pour le calcul du coefficient de la fonction de Schur $s_μ$ dans la décomposition d'une puissance paire du déterminant de Vandermonde en $n+1$ variables, en fonction du coefficient de la fonction de Schur $s_λ$ dans la décomposition de la même puissance paire du déterminant de Vandermonde en $n$ variables, lorsque le diagramme de Young de $μ$ est obtenu à partir du diagramme de Young de $λ$ par l'addition d'une forme de type tetris vers le haut ou vers la gauche.


2012 ◽  
Vol DMTCS Proceedings vol. AQ,... (Proceedings) ◽  
Author(s):  
Dimbinaina Ralaivaosaona

International audience We assign a uniform probability to the set consisting of partitions of a positive integer $n$ such that the multiplicity of each summand is less than a given number $d$ and we study the limiting distribution of the number of summands in a random partition. It is known from a result by Erdős and Lehner published in 1941 that the distributions of the length in random restricted $(d=2)$ and random unrestricted $(d \geq n+1)$ partitions behave very differently. In this paper we show that as the bound $d$ increases we observe a phase transition in which the distribution goes from the Gaussian distribution of the restricted case to the Gumbel distribution of the unrestricted case.


Sign in / Sign up

Export Citation Format

Share Document