scholarly journals The enumeration of fully commutative affine permutations

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Christopher R. H. Hanusa ◽  
Brant C. Jones

International audience We give a generating function for the fully commutative affine permutations enumerated by rank and Coxeter length, extending formulas due to Stembridge and Barcucci–Del Lungo–Pergola–Pinzani. For fixed rank, the length generating functions have coefficients that are periodic with period dividing the rank. In the course of proving these formulas, we obtain results that elucidate the structure of the fully commutative affine permutations. This is a summary of the results; the full version appears elsewhere. Nous présentons une fonction génératrice qui énumère les permutations affines totalement commutatives par leur rang et par leur longueur de Coxeter, généralisant les formules dues à Stembridge et à Barcucci–Del Lungo–Pergola–Pinzani. Pour un rang précis, les fonctions génératrices ont des coefficients qui sont périodiques de période divisant leur rang. Nous obtenons des résultats qui expliquent la structure des permutations affines totalement commutatives. L'article dessous est un aperçu des résultats; la version complète appara\^ıt ailleurs.

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Pietro Mongelli

International audience Based on the notion of colored and absolute excedances introduced by Bagno and Garber we give an analogue of the derangement polynomials. We obtain some basic properties of these polynomials. Moreover, we define an excedance statistic for the affine Weyl groups of type $\widetilde{B}_n, \widetilde {C}_n$ and $\widetilde {D}_n$ and determine the generating functions of their distributions. This paper is inspired by one of Clark and Ehrenborg (2011) in which the authors introduce the excedance statistic for the group of affine permutations and ask if this statistic can be defined for other affine groups. Basée sur la notion des excédances colorés et absolu introduits par Bagno and Garber, nous donnons un analogue des polynômes des dérangements. Nous obtenons quelques propriétés de base de ces polynômes. En outre, nous définissons une excédance statistique pour le groupes de Weyl affines de type $\widetilde{B}_n, \widetilde {C}_n$ et $\widetilde {D}_n$ et nous déterminons les fonctions génératrices de leurs distributions. Cet article est inspirè d'un article de Clark et Ehrenborg (2011) dans lequel les auteurs introduisent les excedances pour le groupe des permutations affine et demander si cette statistique peut être éèfinie pour les autres groupes affines.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Marie Albenque ◽  
Jérémie Bouttier

International audience We consider the problem of enumerating planar constellations with two points at a prescribed distance. Our approach relies on a combinatorial correspondence between this family of constellations and the simpler family of rooted constellations, which we may formulate algebraically in terms of multicontinued fractions and generalized Hankel determinants. As an application, we provide a combinatorial derivation of the generating function of Eulerian triangulations with two points at a prescribed distance. Nous considérons le problème du comptage des constellations planaires à deux points marqués à distance donnée. Notre approche repose sur une correspondance combinatoire entre cette famille de constellations et celle, plus simple, des constellations enracinées. La correspondance peut être reformulée algébriquement en termes de fractions multicontinues et de déterminants de Hankel généralisés. Comme application, nous obtenons par une preuve combinatoire la série génératrice des triangulations eulériennes à deux points marqués à distance donnée.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Jair Taylor

International audience We develop a method for counting words subject to various restrictions by finding a combinatorial interpretation for a product of formal sums of Laguerre polynomials. We use this method to find the generating function for $k$-ary words avoiding any vincular pattern that has only ones. We also give generating functions for $k$-ary words cyclically avoiding vincular patterns with only ones whose runs of ones between dashes are all of equal length, as well as the analogous results for compositions. Nous développons une méthode pour compter des mots satisfaisants certaines restrictions en établissant une interprétation combinatoire utile d’un produit de sommes formelles de polynômes de Laguerre. Nous utilisons cette méthode pour trouver la série génératrice pour les mots $k$-aires évitant les motifs vinculars consistant uniquement de uns. Nous présentons en suite les séries génératrices pour les mots $k$-aires évitant de façon cyclique les motifs vinculars consistant uniquement de uns et dont chaque série de uns entre deux tirets est de la même longueur. Nous présentons aussi les résultats analogues pour les compositions.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Gwendal Collet ◽  
Eric Fusy

International audience We obtain a very simple formula for the generating function of bipartite (resp. quasi-bipartite) planar maps with boundaries (holes) of prescribed lengths, which generalizes certain expressions obtained by Eynard in a book to appear. The formula is derived from a bijection due to Bouttier, Di Francesco and Guitter combined with a process (reminiscent of a construction of Pitman) of aggregating connected components of a forest into a single tree. Nous obtenons une formule très simple pour la série génératrice des cartes biparties ayant des bords (trous) de tailles fixées, généralisant certaines expressions obtenues par Eynard dans un livre à paraître. Nous obtenons la formule à partir d'une bijection due à Bouttier, Di Francesco et Guitter, combinée avec un processus (dans l'esprit d'une construction due à Pitman) pour agréger les composantes connexes d'une forêt en un unique arbre.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Olya Mandelshtam ◽  
Xavier Viennot

International audience In this paper, we introduce therhombic alternative tableaux, whose weight generating functions providecombinatorial formulae to compute the steady state probabilities of the two-species ASEP. In the ASEP, there aretwo species of particles, oneheavyand onelight, on a one-dimensional finite lattice with open boundaries, and theparametersα,β, andqdescribe the hopping probabilities. The rhombic alternative tableaux are enumerated by theLah numbers, which also enumerate certainassembl ́ees of permutations. We describe a bijection between the rhombicalternative tableaux and these assembl ́ees. We also provide an insertion algorithm that gives a weight generatingfunction for the assemb ́ees. Combined, these results give a bijective proof for the weight generating function for therhombic alternative tableaux.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Alain Goupil ◽  
Hugo Cloutier

International audience We consider the family of 3D minimal polyominoes inscribed in a rectanglar prism. These objects are polyominos and so they are connected sets of unitary cubic cells inscribed in a given rectangular prism of size $b\times k \times h$ and of minimal volume equal to $b+k+h-2$. They extend the concept of minimal 2D polyominoes inscribed in a rectangle studied in a previous work. Using their geometric structure and elementary combinatorial principles, we construct rational generating functions of minimal 3D polyominoes. We also obtain a number of exact formulas and recurrences for sub-families of these polyominoes. Nous considérons la famille des polyominos 3D de volume minimal inscrits dans un prisme rectangulaire. Ces objets sont des polyominos et sont donc des ensembles connexes de cubes unitaires. De plus ils sont inscrits dans un prisme rectangulaire de format $b\times k \times h$ donné et ont un volume minimal égal à $b+k+h-2$. Ces polyominos généralisent le concept de polyomino 2D étudié dans un travail précédent. Nous construisons des séries génératrices rationnelles de polyominos 3D minimaux et nous obtenons des formules exactes et des récurrences pour des sous-familles de ces polyominos.


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Masao Ishikawa ◽  
Anisse Kasraoui ◽  
Jiang Zeng

International audience An ordered partition of $[n]:=\{1,2,\ldots, n\}$ is a sequence of disjoint and nonempty subsets, called blocks, whose union is $[n]$. The aim of this paper is to compute some generating functions of ordered partitions by the transfer-matrix method. In particular, we prove several conjectures of Steingrímsson, which assert that the generating function of some statistics of ordered partitions give rise to a natural $q$-analogue of $k!S(n,k)$, where $S(n,k)$ is the Stirling number of the second kind.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Donatella Merlini

International audience We study some lattice paths related to the concept ofgenerating trees. When the matrix associated to this kind of trees is a Riordan array $D=(d(t),h(t))$, we are able to find the generating function for the total area below these paths expressed in terms of the functions $d(t)$ and $h(t)$.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Shuhei Kamioka

International audience A new triple product formulae for plane partitions with bounded size of parts is derived from a combinato- rial interpretation of biorthogonal polynomials in terms of lattice paths. Biorthogonal polynomials which generalize the little q-Laguerre polynomials are introduced to derive a new triple product formula which recovers the classical generating function in a triple product by MacMahon and generalizes the trace-type generating functions in double products by Stanley and Gansner.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Sergi Elizalde ◽  
Marc Noy

International audience We use the cluster method in order to enumerate permutations avoiding consecutive patterns. We reprove and generalize in a unified way several known results and obtain new ones, including some patterns of length 4 and 5, as well as some infinite families of patterns of a given shape. Our main tool is the cluster method of Goulden and Jackson. We also prove some that, for a large class of patterns, the inverse of the exponential generating function counting occurrences is an entire function, but we conjecture that it is not D-finite in general. On utilise la mèthode des clusters pour ènumèrer permutations qui èvitent motifs consècutifs. On redèmontre et on gènèralise d'une manière unifièe plusieurs rèsultats et on obtient de nouveaux rèsultats pour certains motifs de longueur 4 et 5, ainsi que pour certaines familles infinies de motifs. L'outil principal c'est la mèthode des clusters de Goulden et Jackson. On dèmontre aussi que, pour une grande classe de motifs, l'inverse de la sèrie gènèratrice exponentielle qui compte occurrences est une fonction entière, mais on conjecture qu'elle n'est pas D-finie en gènèral.


Sign in / Sign up

Export Citation Format

Share Document