scholarly journals Discrepancy of Products of Hypergraphs

2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Benjamin Doerr ◽  
Michael Gnewuch ◽  
Nils Hebbinghaus

International audience For a hypergraph $\mathcal{H} = (V,\mathcal{E})$, its $d$―fold symmetric product is $\Delta^d \mathcal{H} = (V^d,\{ E^d | E \in \mathcal{E} \})$. We give several upper and lower bounds for the $c$-color discrepancy of such products. In particular, we show that the bound $\textrm{disc}(\Delta^d \mathcal{H},2) \leq \textrm{disc}(\mathcal{H},2)$ proven for all $d$ in [B. Doerr, A. Srivastav, and P. Wehr, Discrepancy of Cartesian products of arithmetic progressions, Electron. J. Combin. 11(2004), Research Paper 5, 16 pp.] cannot be extended to more than $c = 2$ colors. In fact, for any $c$ and $d$ such that $c$ does not divide $d!$, there are hypergraphs having arbitrary large discrepancy and $\textrm{disc}(\Delta^d \mathcal{H},c) = \Omega_d(\textrm{disc}(\mathcal{H},c)^d)$. Apart from constant factors (depending on $c$ and $d$), in these cases the symmetric product behaves no better than the general direct product $\mathcal{H}^d$, which satisfies $\textrm{disc}(\mathcal{H}^d,c) = O_{c,d}(\textrm{disc}(\mathcal{H},c)^d)$.

10.37236/1066 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Benjamin Doerr ◽  
Michael Gnewuch ◽  
Nils Hebbinghaus

For a hypergraph ${\cal H} = (V,{\cal E})$, its $d$–fold symmetric product is defined to be $\Delta^d {\cal H} = (V^d,\{E^d |E \in {\cal E}\})$. We give several upper and lower bounds for the $c$-color discrepancy of such products. In particular, we show that the bound ${\rm disc}(\Delta^d {\cal H},2) \le {\rm disc}({\cal H},2)$ proven for all $d$ in [B. Doerr, A. Srivastav, and P. Wehr, Discrepancy of Cartesian products of arithmetic progressions, Electron. J. Combin. 11(2004), Research Paper 5, 16 pp.] cannot be extended to more than $c = 2$ colors. In fact, for any $c$ and $d$ such that $c$ does not divide $d!$, there are hypergraphs having arbitrary large discrepancy and ${\rm disc}(\Delta^d {\cal H},c) = \Omega_d({\rm disc}({\cal H},c)^d)$. Apart from constant factors (depending on $c$ and $d$), in these cases the symmetric product behaves no better than the general direct product ${\cal H}^d$, which satisfies ${\rm disc}({\cal H}^d,c) = O_{c,d}({\rm disc}({\cal H},c)^d)$.


2001 ◽  
Vol 32 (4) ◽  
pp. 335-341
Author(s):  
Tom C. Brown ◽  
Jau-Shyong Peter Shiue

In this expository note, we discuss the celebrated theorem known as ``van der Waerden's theorem on arithmetic progressions", the history of work on upper and lower bounds for the function associated with this theorem, a number of generalizations, and some open problems.


1996 ◽  
Vol 33 (01) ◽  
pp. 184-195 ◽  
Author(s):  
Xiaodong Lin

Bounds on the tail of compound distributions are considered. Using a generalization of Wald's fundamental identity, we derive upper and lower bounds for various compound distributions in terms of new worse than used (NWU) and new better than used (NBU) distributions respectively. Simple bounds are obtained when the claim size distribution is NWUC, NBUC, NWU, NBU, IMRL, DMRL, DFR and IFR. Examples on how to use these bounds are given.


1999 ◽  
Vol 60 (1) ◽  
pp. 21-35
Author(s):  
Tom C. Brown ◽  
Bruce M. Landman

A generalisation of the van der Waerden numbers w(k, r) is considered. For a function f: Z+ → R+ define w(f, k, r) to be the least positive integer (if it exists) such that for every r-coloring of [1, w(f, k, r)] there is a monochromatic arithmetic progression {a + id: 0 ≤ i ≤ k −1} such that d ≥ f(a). Upper and lower bounds are given for w(f, 3, 2). For k > 3 or r > 2, particular functions f are given such that w(f, k, r) does not exist. More results are obtained for the case in which f is a constant function.


2013 ◽  
Vol Vol. 15 no. 3 (Combinatorics) ◽  
Author(s):  
Crevel Bautista-Santiago ◽  
Javier Cano ◽  
Ruy Fabila-Monroy ◽  
David Flores-Peñaloza ◽  
Hernàn González-Aguilar ◽  
...  

Combinatorics International audience Let P be a set of n points in general position in the plane. A subset I of P is called an island if there exists a convex set C such that I = P \C. In this paper we define the generalized island Johnson graph of P as the graph whose vertex consists of all islands of P of cardinality k, two of which are adjacent if their intersection consists of exactly l elements. We show that for large enough values of n, this graph is connected, and give upper and lower bounds on its diameter.


2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Selma Djelloul ◽  
Mekkia Kouider

International audience We study in graphs properties related to fault-tolerance in case a node fails. A graph G is k-self-repairing, where k is a non-negative integer, if after the removal of any vertex no distance in the surviving graph increases by more than k. In the design of interconnection networks such graphs guarantee good fault-tolerance properties. We give upper and lower bounds on the minimum number of edges of a k-self-repairing graph for prescribed k and n, where n is the order of the graph. We prove that the problem of finding, in a k-self-repairing graph, a spanning k-self-repairing subgraph of minimum size is NP-Hard.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Nicholas R. Beaton ◽  
Filippo Disanto ◽  
Anthony J. Guttmann ◽  
Simone Rinaldi

International audience We study the enumeration of \emphcolumn-convex permutominoes, i.e. column-convex polyominoes defined by a pair of permutations. We provide a direct recursive construction for the column-convex permutominoes of a given size, based on the application of the ECO method and generating trees, which leads to a functional equation. Then we obtain some upper and lower bounds for the number of column-convex permutominoes, and conjecture its asymptotic behavior using numerical analysis. Nous étudions l'énumeration des \emphpermutominos verticalement convexes, c.à.d. les polyominos verticalement convexes définis par un couple de permutations. Nous donnons une construction recursive directe pour ces permutominos de taille fixée, basée sur une application de la méthode ECO et les arbres de génération, qui nous amène à une équat ion fonctionelle. Ensuite nous obtenons des bornes superieures et inférieures pour le nombre de ces permutominos convexes et nous conjecturons leur comportement asymptotique à l'aide d'analyses numériques.


Author(s):  
Jan Feliksiak

In this research paper, we implement the theory of the primorial function, to develop the Supremum and Infimum bounds for the sum of (log(p))2. There are, however, considerable computational difficulties related to these bounds. Therefore, from a pragmatic point of view, a set of Upper and Lower bounds had been developed to bypass this issue. Despite the increased estimation error, the Upper and Lower bounds are still considered sufficiently accurate, while facilitating an easy and fast computation of the estimate of the sum.


2011 ◽  
Vol Vol. 13 no. 2 (Graph and Algorithms) ◽  
Author(s):  
David R. Wood

Graphs and Algorithms International audience We prove upper and lower bounds on the chromatic number of the square of the cartesian product of trees. The bounds are equal if each tree has even maximum degree.


2006 ◽  
Vol Vol. 8 ◽  
Author(s):  
Tiziana Calamoneri

International audience The L(h, k)-labeling is an assignment of non negative integer labels to the nodes of a graph such that 'close' nodes have labels which differ by at least k, and 'very close' nodes have labels which differ by at least h. The span of an L(h,k)-labeling is the difference between the largest and the smallest assigned label. We study L(h, k)-labelings of cellular, squared and hexagonal grids, seeking those with minimum span for each value of k and h ≥ k. The L(h,k)-labeling problem has been intensively studied in some special cases, i.e. when k=0 (vertex coloring), h=k (vertex coloring the square of the graph) and h=2k (radio- or λ -coloring) but no results are known in the general case for regular grids. In this paper, we completely solve the L(h,k)-labeling problem on regular grids, finding exact values of the span for each value of h and k; only in a small interval we provide different upper and lower bounds.


Sign in / Sign up

Export Citation Format

Share Document