scholarly journals Analysis of the total costs for variants of the Union-Find algorithm

2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Markus Kuba ◽  
Alois Panholzer

International audience We study the average behavior of variants of the UNION-FIND algorithm to maintain partitions of a finite set under the random spanning tree model. By applying the method of moments we can characterize the limiting distribution of the total costs of the algorithms "Quick Find Weighted'' and "Quick Find Biased'' extending the analysis of Knuth and Schönhage, Yao, and Chassaing and Marchand.

2011 ◽  
Vol Vol. 12 no. 3 (Combinatorics) ◽  
Author(s):  
Shu-Chiuan Chang ◽  
Lung-Chi Chen

Combinatorics International audience Consider spanning trees on the two-dimensional Sierpinski gasket SG(n) where stage n is a non-negative integer. For any given vertex x of SG(n), we derive rigorously the probability distribution of the degree j ∈{1,2,3,4} at the vertex and its value in the infinite n limit. Adding up such probabilities of all the vertices divided by the number of vertices, we obtain the average probability distribution of the degree j. The corresponding limiting distribution φj gives the average probability that a vertex is connected by 1, 2, 3 or 4 bond(s) among all the spanning tree configurations. They are rational numbers given as φ1=10957/40464, φ2=6626035/13636368, φ3=2943139/13636368, φ4=124895/4545456.


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Alois Panholzer

International audience We consider extended binary trees and study the common right and left depth of leaf $j$, where the leaves are labelled from left to right by $0, 1, \ldots, n$, and the common right and left external pathlength of binary trees of size $n$. Under the random tree model, i.e., the Catalan model, we characterize the common limiting distribution of the suitably scaled left depth and the difference between the right and the left depth of leaf $j$ in a random size-$n$ binary tree when $j \sim \rho n$ with $0< \rho < 1$, as well as the common limiting distribution of the suitably scaled left external pathlength and the difference between the right and the left external pathlength of a random size-$n$ binary tree.


2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Frédérique Bassino ◽  
Julien Clément ◽  
J. Fayolle ◽  
P. Nicodème

International audience In this paper, we give the multivariate generating function counting texts according to their length and to the number of occurrences of words from a finite set. The application of the inclusion-exclusion principle to word counting due to Goulden and Jackson (1979, 1983) is used to derive the result. Unlike some other techniques which suppose that the set of words is reduced (<i>i..e.</i>, where no two words are factor of one another), the finite set can be chosen arbitrarily. Noonan and Zeilberger (1999) already provided a MAPLE package treating the non-reduced case, without giving an expression of the generating function or a detailed proof. We give a complete proof validating the use of the inclusion-exclusion principle and compare the complexity of the method proposed here with the one using automata for solving the problem.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


2012 ◽  
Vol DMTCS Proceedings vol. AQ,... (Proceedings) ◽  
Author(s):  
Patrick Bindjeme ◽  
james Allen fill

International audience In a continuous-time setting, Fill (2012) proved, for a large class of probabilistic sources, that the number of symbol comparisons used by $\texttt{QuickSort}$, when centered by subtracting the mean and scaled by dividing by time, has a limiting distribution, but proved little about that limiting random variable $Y$—not even that it is nondegenerate. We establish the nondegeneracy of $Y$. The proof is perhaps surprisingly difficult.


2012 ◽  
Vol 231 (3-4) ◽  
pp. 1886-1939 ◽  
Author(s):  
John A. Baldwin ◽  
Adam Simon Levine

2011 ◽  
Vol 03 (04) ◽  
pp. 473-489
Author(s):  
HAI DU ◽  
WEILI WU ◽  
ZAIXIN LU ◽  
YINFENG XU

The Steiner minimum tree and the minimum spanning tree are two important problems in combinatorial optimization. Let P denote a finite set of points, called terminals, in the Euclidean space. A Steiner minimum tree of P, denoted by SMT(P), is a network with minimum length to interconnect all terminals, and a minimum spanning tree of P, denoted by MST(P), is also a minimum network interconnecting all the points in P, however, subject to the constraint that all the line segments in it have to terminate at terminals. Therefore, SMT(P) may contain points not in P, but MST(P) cannot contain such kind of points. Let [Formula: see text] denote the n-dimensional Euclidean space. The Steiner ratio in [Formula: see text] is defined to be [Formula: see text], where Ls(P) and Lm(P), respectively, denote lengths of a Steiner minimum tree and a minimum spanning tree of P. The best previously known lower bound for [Formula: see text] in the literature is 0.615. In this paper, we show that [Formula: see text] for any n ≥ 2.


Author(s):  
Asbjørn Christian Nordentoft

Abstract In this paper, we determine the limiting distribution of the image of the Eichler–Shimura map or equivalently the limiting joint distribution of the coefficients of the period polynomials associated to a fixed cusp form. The limiting distribution is shown to be the distribution of a certain transformation of two independent random variables both of which are equidistributed on the circle $\mathbb{R}/\mathbb{Z}$, where the transformation is connected to the additive twist of the cuspidal $L$-function. Furthermore, we determine the asymptotic behavior of the zeroes of the period polynomials of a fixed cusp form. We use the method of moments and the main ingredients in the proofs are additive twists of $L$-functions and bounds for both individual and sums of Kloosterman sums.


10.12737/7483 ◽  
2014 ◽  
Vol 8 (7) ◽  
pp. 0-0
Author(s):  
Олег Сдвижков ◽  
Oleg Sdvizhkov

Cluster analysis [3] is a relatively new branch of mathematics that studies the methods partitioning a set of objects, given a finite set of attributes into homogeneous groups (clusters). Cluster analysis is widely used in psychology, sociology, economics (market segmentation), and many other areas in which there is a problem of classification of objects according to their characteristics. Clustering methods implemented in a package STATISTICA [1] and SPSS [2], they return the partitioning into clusters, clustering and dispersion statistics dendrogram of hierarchical clustering algorithms. MS Excel Macros for main clustering methods and application examples are given in the monograph [5]. One of the central problems of cluster analysis is to define some criteria for the number of clusters, we denote this number by K, into which separated are a given set of objects. There are several dozen approaches [4] to determine the number K. In particular, according to [6], the number of clusters K - minimum number which satisfies where - the minimum value of total dispersion for partitioning into K clusters, N - number of objects. Among the clusters automatically causes the consistent application of abnormal clusters [4]. In 2010, proposed and experimentally validated was a method for obtaining the number of K by applying the density function [4]. The article offers two simple approaches to determining K, where each cluster has at least two objects. In the first number K is determined by the shortest Hamiltonian cycles in the second - through the minimum spanning tree. The examples of clustering with detailed step by step solutions and graphic illustrations are suggested. Shown is the use of macro VBA Excel, which returns the minimum spanning tree to the problems of clustering. The article contains a macro code, with commentaries to the main unit.


Sign in / Sign up

Export Citation Format

Share Document