scholarly journals A lower bound for approximating the Grundy number

2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Guy Kortsarz

Graphs and Algorithms International audience The grundy numbering of a graph is the maximum number of colors used by on-line first-fit coloring, under the worst order of arrival of vertices. The grundy numbering problem is to find this ordering. We prove that there is a constant c>1 so that approximating the grundy numbering problem within c is not possible, unless NP ⊆ RP


2012 ◽  
Vol DMTCS Proceedings vol. AQ,... (Proceedings) ◽  
Author(s):  
Zbigniew Gołębiewski ◽  
Filip Zagórski

International audience In the paper "How to select a looser'' Prodinger was analyzing an algorithm where $n$ participants are selecting a leader by flipping <underline>fair</underline> coins, where recursively, the 0-party (those who i.e. have tossed heads) continues until the leader is chosen. We give an answer to the question stated in the Prodinger's paper – what happens if not a 0-party is recursively looking for a leader but always a party with a smaller cardinality. We show the lower bound on the number of rounds of the greedy algorithm (for <underline>fair</underline> coin).



1994 ◽  
Vol 50 (3) ◽  
pp. 113-116 ◽  
Author(s):  
Yair Bartal ◽  
Howard Karloff ◽  
Yuval Rabani
Keyword(s):  


2018 ◽  
Vol 29 (08) ◽  
pp. 1311-1329
Author(s):  
Michał Adamczyk ◽  
Mai Alzamel ◽  
Panagiotis Charalampopoulos ◽  
Jakub Radoszewski

Identifying palindromes in sequences has been an interesting line of research in combinatorics on words and also in computational biology, after the discovery of the relation of palindromes in the DNA sequence with the HIV virus. Efficient algorithms for the factorization of sequences into palindromes and maximal palindromes have been devised in recent years. We extend these studies by allowing gaps in decompositions and errors in palindromes, and also imposing a lower bound to the length of acceptable palindromes. We first present an on-line algorithm for obtaining a palindromic decomposition of a string of length [Formula: see text] with the minimal total gap length in time [Formula: see text] and space [Formula: see text], where [Formula: see text] is the number of allowed gaps in the decomposition. We then consider a decomposition of the string in maximal [Formula: see text]-palindromes (i.e. palindromes with [Formula: see text] errors under the edit or Hamming distance) and [Formula: see text] allowed gaps. We present an algorithm to obtain such a decomposition with the minimal total gap length in time [Formula: see text] and space [Formula: see text]. Finally, we provide an implementation of our algorithms.



2019 ◽  
Vol 63 (8) ◽  
pp. 1819-1848
Author(s):  
Dariusz Dereniowski ◽  
Dorota Osula

Abstract We consider the following on-line pursuit-evasion problem. A team of mobile agents called searchers starts at an arbitrary node of an unknown network. Their goal is to execute a search strategy that guarantees capturing a fast and invisible intruder regardless of its movements using as few searchers as possible. We require that the strategy is connected and monotone, that is, at each point of the execution the part of the graph that is guaranteed to be free of the fugitive is connected and whenever some node gains a property that it cannot be occupied by the fugitive, the strategy must operate in such a way to keep this property till its end. As a way of modeling two-dimensional shapes, we restrict our attention to networks that are embedded into partial grids: nodes are placed on the plane at integer coordinates and only nodes at distance one can be adjacent. Agents do not have any knowledge about the graph a priori, but they recognize the direction of the incident edge (up, down, left or right). We give an on-line algorithm for the searchers that allows them to compute a connected and monotone strategy that guarantees searching any unknown partial grid with the use of $O(\sqrt {n})$ O ( n ) searchers, where n is the number of nodes in the grid. As for a lower bound, there exist partial grids that require ${\varOmega }(\sqrt {n})$ Ω ( n ) searchers. Moreover, we prove that for each on-line searching algorithm there is a partial grid that forces the algorithm to use ${\varOmega }(\sqrt {n})$ Ω ( n ) searchers but $O(\log n)$ O ( log n ) searchers are sufficient in the off-line scenario. This gives a lower bound on ${\varOmega }(\sqrt {n}/\log n)$ Ω ( n / log n ) in terms of achievable competitive ratio of any on-line algorithm.



2001 ◽  
Vol 11 (04) ◽  
pp. 401-421 ◽  
Author(s):  
ALEJANDRO LÓPEZ-ORTIZ ◽  
SVEN SCHUIERER

We present lower bounds for on-line searching problems in two special classes of simple polygons called streets and generalized streets. In streets we assume that the location of the target is known to the robot in advance and prove a lower bound of [Formula: see text] on the competitive ratio of any deterministic search strategy—which can be shown to be tight. For generalized streets we show that if the location of the target is not known, then there is a class of orthogonal generalized streets for which the competitive ratio of any search strategy is at least [Formula: see text] in the L2-metric—again matching the competitive ratio of the best known algorithm. We also show that if the location of the target is known, then the competitive ratio for searching in generalized streets in the L1-metric is at least 9 which is tight as well. The former result is based on a lower bound on the average competitive ratio of searching on the real line if an upper bound of D to the target is given. We show that in this case the average competitive ratio is at least 9-O(1/ log D).



2007 ◽  
Vol 307 (11-12) ◽  
pp. 1347-1355 ◽  
Author(s):  
Erik Bruoth ◽  
Mirko Horňák
Keyword(s):  


2012 ◽  
Vol 29 (04) ◽  
pp. 1250020 ◽  
Author(s):  
YUHUA CAI ◽  
QI FENG ◽  
WENJIE LI

In this paper, we consider a semi-on-line scheduling problem of two identical machines with common maintenance time interval and nonresumable availability. We prove a lower bound of 2.79129 on the competitive ratio and give an on-line algorithm with competitive ratio 2.79633 for this problem.



1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Hans L. Bodlaender

International audience In [DO95], Ding and Oporowski proved that for every k, and d, there exists a constant c_k,d, such that every graph with treewidth at most k and maximum degree at most d has domino treewidth at most c_k,d. This note gives a new simple proof of this fact, with a better bound for c_k,d, namely (9k+7)d(d+1) -1. It is also shown that a lower bound of Ω (kd) holds: there are graphs with domino treewidth at least 1/12 × kd-1, treewidth at most k, and maximum degree at most d, for many values k and d. The domino treewidth of a tree is at most its maximum degree.



2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Gábor Hetyei

International audience We introduce the short toric polynomial associated to a graded Eulerian poset. This polynomial contains the same information as Stanley's pair of toric polynomials, but allows different algebraic manipulations. Stanley's intertwined recurrence may be replaced by a single recurrence, in which the degree of the discarded terms is independent of the rank. A short toric variant of the formula by Bayer and Ehrenborg, expressing the toric h-vector in terms of the cd-index, may be stated in a rank-independent form, and it may be shown using weighted lattice path enumeration and the reflection principle. We use our techniques to derive a formula expressing the toric h-vector of a dual simplicial Eulerian poset in terms of its f-vector. This formula implies Gessel's formula for the toric h-vector of a cube, and may be used to prove that the nonnegativity of the toric h-vector of a simple polytope is a consequence of the Generalized Lower Bound Theorem holding for simplicial polytopes. Nous introduisons le polynôme torique court associé à un ensemble ordonné Eulérien. Ce polynôme contient la même information que le couple de polynômes toriques de Stanley, mais il permet des manipulations algébriques différentes. La récurrence entrecroisée de Stanley peut être remplacée par une seule récurrence dans laquelle le degré des termes écartés est indépendant du rang. La variante torique courte de la formule de Bayer et Ehrenborg, qui exprime le vecteur torique d'un ensemble ordonné Eulérien en termes de son cd-index, est énoncée sous une forme qui ne dépend pas du rang et qui peut être démontrée en utilisant une énumération des chemins pondérés et le principe de réflexion. Nous utilisons nos techniques pour dériver une formule exprimant le vecteur h-torique d'un ensemble ordonné Eulérien dont le dual est simplicial, en termes de son f-vecteur. Cette formule implique la formule de Gessel pour le vecteur h-torique d'un cube, et elle peut être utilisée pour démontrer que la positivité du vecteur h-torique d'un polytope simple est une conséquence du Théorème de la Borne Inférieure Généralisé appliqué aux polytopes simpliciaux.



2015 ◽  
Vol Vol. 17 no.2 (Graph Theory) ◽  
Author(s):  
Ahmad Biniaz ◽  
Prosenjit Bose ◽  
Anil Maheshwari ◽  
Michiel Smid

International audience Given a set $P$ of $n$ points in the plane, where $n$ is even, we consider the following question: How many plane perfect matchings can be packed into $P$? For points in general position we prove the lower bound of &#x230A;log<sub>2</sub>$n$&#x230B;$-1$. For some special configurations of point sets, we give the exact answer. We also consider some restricted variants of this problem.



Sign in / Sign up

Export Citation Format

Share Document