scholarly journals Tiling Periodicity

2010 ◽  
Vol Vol. 12 no. 2 ◽  
Author(s):  
Juhani Karhumaki ◽  
Yury Lifshits ◽  
Wojciech Rytter

International audience We contribute to combinatorics and algorithmics of words by introducing new types of periodicities in words. A tiling period of a word w is partial word u such that w can be decomposed into several disjoint parallel copies of u, e.g. a lozenge b is a tiling period of a a b b. We investigate properties of tiling periodicities and design an algorithm working in O(n log (n) log log (n)) time which finds a tiling period of minimal size, the number of such minimal periods and their compact representation. The combinatorics of tiling periods differs significantly from that for classical full periods, for example unlike the classical case the same word can have many different primitive tiling periods. We consider also a related new type of periods called in the paper multi-periods. As a side product of the paper we solve an open problem posted by T. Harju (2003).

2011 ◽  
Vol Vol. 13 no. 4 ◽  
Author(s):  
Thomas P. Hayes

special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity International audience For every positive integer k, we construct an explicit family of functions f : \0, 1\(n) -\textgreater \0, 1\ which has (k + 1) - party communication complexity O(k) under every partition of the input bits into k + 1 parts of equal size, and k-party communication complexity Omega (n/k(4)2(k)) under every partition of the input bits into k parts. This improves an earlier hierarchy theorem due to V. Grolmusz. Our construction relies on known explicit constructions for a famous open problem of K. Zarankiewicz, namely, to find the maximum number of edges in a graph on n vertices that does not contain K-s,K-t as a subgraph.


2005 ◽  
Vol Vol. 7 ◽  
Author(s):  
Kumar Neeraj Verma ◽  
Jean Goubault-Larrecq

International audience We study BVASS (Branching VASS) which extend VASS (Vector Addition Systems with States) by allowing addition transitions that merge two configurations. Runs in BVASS are tree-like structures instead of linear ones as for VASS. We show that the construction of Karp-Miller trees for VASS can be extended to BVASS. This entails that the coverability set for BVASS is computable. This allows us to obtain decidability results for certain classes of equational tree automata with an associative-commutative symbol. Recent independent work by de Groote et al. implies that decidability of reachability in BVASS is equivalent to decidability of provability in MELL (multiplicative exponential linear logic), which is still an open problem. Hence our results are also a step towards answering this question in the affirmative.


2013 ◽  
Vol Vol. 15 no. 2 (Automata, Logic and Semantics) ◽  
Author(s):  
Marcella Anselmo ◽  
Maria Madonia

Automata, Logic and Semantics International audience The paper presents a condition necessarily satisfied by (tiling system) recognizable two-dimensional languages. The new recognizability condition is compared with all the other ones known in the literature (namely three conditions), once they are put in a uniform setting: they are stated as bounds on the growth of some complexity functions defined for two-dimensional languages. The gaps between such functions are analyzed and examples are shown that asymptotically separate them. Finally the new recognizability condition results to be the strongest one, while the remaining ones are its particular cases. The problem of deciding whether a two-dimensional language is recognizable is here related to the one of estimating the minimal size of finite automata recognizing a sequence of (one-dimensional) string languages.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
John Talbot

International audience We consider a new type of extremal hypergraph problem: given an $r$-graph $\mathcal{F}$ and an integer $k≥2$ determine the maximum number of edges in an $\mathcal{F}$-free, $k$-colourable $r$-graph on $n$ vertices. Our motivation for studying such problems is that it allows us to give a new upper bound for an old problem due to Turán. We show that a 3-graph in which any four vertices span at most two edges has density less than $\frac{33}{ 100}$, improving previous bounds of $\frac{1}{ 3}$ due to de Caen [1], and $\frac{1}{ 3}-4.5305×10^-6$ due to Mubayi [9].


2018 ◽  
Vol 103 (117) ◽  
pp. 61-68
Author(s):  
Wendy Goemans

A new type of surfaces in 4-dimensional Euclidean and Lorentz-Minkowski space is constructed by performing two simultaneous rotations on a planar curve. In analogy with rotational surfaces, the resulting surfaces are called double rotational surfaces. Classification theorems of flat double rotational surfaces are proved. These classifications contain amongst other cones over 4-dimensional Clelia curves. As a side product these new kinds of curves in 4-space are defined.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Bruce Reed ◽  
David R. Wood

International audience Let $G$ be an $n$-vertex $m$-edge graph with weighted vertices. A pair of vertex sets $A,B \subseteq V(G)$ is a $\frac{2}{3} - \textit{separation}$ of $\textit{order}$ $|A \cap B|$ if $A \cup B = V(G)$, there is no edge between $A \backslash B$ and $B \backslash A$, and both $A \backslash B$ and $B \backslash A$ have weight at most $\frac{2}{3}$ the total weight of $G$. Let $\ell \in \mathbb{Z}^+$ be fixed. Alon, Seymour and Thomas [$\textit{J. Amer. Math. Soc.}$ 1990] presented an algorithm that in $\mathcal{O}(n^{1/2}m)$ time, either outputs a $K_\ell$-minor of $G$, or a separation of $G$ of order $\mathcal{O}(n^{1/2})$. Whether there is a $\mathcal{O}(n+m)$ time algorithm for this theorem was left as open problem. In this paper, we obtain a $\mathcal{O}(n+m)$ time algorithm at the expense of $\mathcal{O}(n^{2/3})$ separator. Moreover, our algorithm exhibits a tradeoff between running time and the order of the separator. In particular, for any given $\epsilon \in [0,\frac{1}{2}]$, our algorithm either outputs a $K_\ell$-minor of $G$, or a separation of $G$ with order $\mathcal{O}(n^{(2-\epsilon )/3})$ in $\mathcal{O}(n^{1+\epsilon} +m)$ time.


2011 ◽  
Vol Vol. 13 no. 3 (Graph and Algorithms) ◽  
Author(s):  
Vida Dujmović ◽  
David R. Wood

Graphs and Algorithms International audience Every k-tree has book thickness at most k + 1, and this bound is best possible for all k \textgreater= 3. Vandenbussche et al. [SIAM J. Discrete Math., 2009] proved that every k-tree that has a smooth degree-3 tree decomposition with width k has book thickness at most k. We prove this result is best possible for k \textgreater= 4, by constructing a k-tree with book thickness k + 1 that has a smooth degree-4 tree decomposition with width k. This solves an open problem of Vandenbussche et al.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Sami H. Assaf ◽  
Peter R. W. McNamara

International audience The Pieri rule expresses the product of a Schur function and a single row Schur function in terms of Schur functions. We extend the classical Pieri rule by expressing the product of a skew Schur function and a single row Schur function in terms of skew Schur functions. Like the classical rule, our rule involves simple additions of boxes to the original skew shape. Our proof is purely combinatorial and extends the combinatorial proof of the classical case. La règle de Pieri exprime le produit d'une fonction de Schur et de la fonction de Schur d'une seule ligne en termes de fonctions de Schur. Nous étendons la règle classique de Pieri en exprimant le produit d'un fonction gauche de Schur et de la fonction de Schur d'une ligne en termes de fonctions gauches de Schur. Comme la règle classique, notre règle implique l'ajout de cases à la forme gauche initiale. Notre preuve est purement combinatoire et étend celle du cas classique.


2014 ◽  
Vol Vol. 16 no. 3 (Combinatorics) ◽  
Author(s):  
Ian Norris ◽  
Nándor Sieben

Combinatorics International audience In a biased weak (a,b) polyform achievement game, the maker and the breaker alternately mark a,b previously unmarked cells on an infinite board, respectively. The maker's goal is to mark a set of cells congruent to a polyform. The breaker tries to prevent the maker from achieving this goal. A winning maker strategy for the (a,b) game can be built from winning strategies for games involving fewer marks for the maker and the breaker. A new type of breaker strategy called the priority strategy is introduced. The winners are determined for all (a,b) pairs for polyiamonds and polyominoes up to size four.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Anders Claesson ◽  
Henning Úlfarsson

International audience We introduce an algorithm to determine when a sorting operation, such as stack-sort or bubble-sort, outputs a given pattern. The algorithm provides a new proof of the description of West-2-stack-sortable permutations, that is permutations that are completely sorted when passed twice through a stack, in terms of patterns. We also solve the long-standing problem of describing West-3-stack-sortable permutations. This requires a new type of generalized permutation pattern we call a decorated pattern. On introduit un algorithme qui détermine quand un opérateur de tri (tels que le tri par une pile, ou le tri-bulle) produit un motif donnè en sortie. Cet algorithme fournit une nouvelle preuve de la caractérisation des permutations 2-triables au sens de West (c'est-à-dire des permutations qui sont triées complètement par deux passages dans une pile) par des motifs interdits. On résout aussi le problème longtemps ouvert de la caractérisation des permutations 3-triables au sens de West. Ceci demande de définir un nouveau type de motifs généralisés, appelè motif décoré.


Sign in / Sign up

Export Citation Format

Share Document