scholarly journals Fast separation in a graph with an excluded minor

2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Bruce Reed ◽  
David R. Wood

International audience Let $G$ be an $n$-vertex $m$-edge graph with weighted vertices. A pair of vertex sets $A,B \subseteq V(G)$ is a $\frac{2}{3} - \textit{separation}$ of $\textit{order}$ $|A \cap B|$ if $A \cup B = V(G)$, there is no edge between $A \backslash B$ and $B \backslash A$, and both $A \backslash B$ and $B \backslash A$ have weight at most $\frac{2}{3}$ the total weight of $G$. Let $\ell \in \mathbb{Z}^+$ be fixed. Alon, Seymour and Thomas [$\textit{J. Amer. Math. Soc.}$ 1990] presented an algorithm that in $\mathcal{O}(n^{1/2}m)$ time, either outputs a $K_\ell$-minor of $G$, or a separation of $G$ of order $\mathcal{O}(n^{1/2})$. Whether there is a $\mathcal{O}(n+m)$ time algorithm for this theorem was left as open problem. In this paper, we obtain a $\mathcal{O}(n+m)$ time algorithm at the expense of $\mathcal{O}(n^{2/3})$ separator. Moreover, our algorithm exhibits a tradeoff between running time and the order of the separator. In particular, for any given $\epsilon \in [0,\frac{1}{2}]$, our algorithm either outputs a $K_\ell$-minor of $G$, or a separation of $G$ with order $\mathcal{O}(n^{(2-\epsilon )/3})$ in $\mathcal{O}(n^{1+\epsilon} +m)$ time.

2012 ◽  
Vol Vol. 14 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Serge Gaspers ◽  
Mathieu Liedloff

Graphs and Algorithms International audience An independent dominating set D of a graph G = (V,E) is a subset of vertices such that every vertex in V \ D has at least one neighbor in D and D is an independent set, i.e. no two vertices of D are adjacent in G. Finding a minimum independent dominating set in a graph is an NP-hard problem. Whereas it is hard to cope with this problem using parameterized and approximation algorithms, there is a simple exact O(1.4423^n)-time algorithm solving the problem by enumerating all maximal independent sets. In this paper we improve the latter result, providing the first non trivial algorithm computing a minimum independent dominating set of a graph in time O(1.3569^n). Furthermore, we give a lower bound of \Omega(1.3247^n) on the worst-case running time of this algorithm, showing that the running time analysis is almost tight.


2011 ◽  
Vol Vol. 13 no. 2 (Graph and Algorithms) ◽  
Author(s):  
Yury Person ◽  
Mathias Schacht

Graphs and Algorithms International audience We present an algorithm that for 2-colorable 3-uniform hypergraphs, finds a 2-coloring in average running time O (n(5) log(2) n).


2018 ◽  
Vol 1 (3) ◽  
pp. 2
Author(s):  
José Stênio De Negreiros Júnior ◽  
Daniel Do Nascimento e Sá Cavalcante ◽  
Jermana Lopes de Moraes ◽  
Lucas Rodrigues Marcelino ◽  
Francisco Tadeu De Carvalho Belchior Magalhães ◽  
...  

Simulating the propagation of optical pulses in a single mode optical fiber is of fundamental importance for studying the several effects that may occur within such medium when it is under some linear and nonlinear effects. In this work, we simulate it by implementing the nonlinear Schrödinger equation using the Split-Step Fourier method in some of its approaches. Then, we compare their running time, algorithm complexity and accuracy regarding energy conservation of the optical pulse. We note that the method is simple to implement and presents good results of energy conservation, besides low temporal cost. We observe a greater precision for the symmetrized approach, although its running time can be up to 126% higher than the other approaches, depending on the parameters set. We conclude that the time window must be adjusted for each length of propagation in the fiber, so that the error regarding energy conservation during propagation can be reduced.


2020 ◽  
Author(s):  
C. A. Weffort-Santos ◽  
L. L. C. Pedrosa

We study a generalization of graph colouring define as follows. Given a graph G, a (star, k)-colouring of G is a colouring c : V(G) → {1, ..., k} such that every colour class induces a star. We propose an O*(2^(O(tw))k^(tw)-time algorithm that decides whether a graph G of treewidth at most tw admits a (star, k)-colouring. This resolves an open problem posed by Angelini et al. in 2017. Our approach can be extended to other defective colouring models.


2011 ◽  
Vol 03 (03) ◽  
pp. 323-336 ◽  
Author(s):  
FANICA GAVRIL

A circle n-gon is the region between n or fewer non-crossing chords of a circle, no chord connecting the arcs between two other chords; the sides of a circle n-gon are either chords or arcs of the circle. A circle n-gon graph is the intersection graph of a family of circle n-gons in a circle. The family of circle trapezoid graphs is exactly the family of circle 2-gon graphs and the family of circle graphs is exactly the family of circle 1-gon graphs. The family of circle n-gon graphs contains the polygon-circle graphs which have an intersection representation by circle polygons, each polygon with at most n chords. We describe a polynomial time algorithm to find a minimum weight feedback vertex set, or equivalently, a maximum weight induced forest, in a circle n-gon graph with positive weights, when its intersection model by n-gon-interval-filaments is given.


2010 ◽  
Vol Vol. 12 no. 2 ◽  
Author(s):  
Juhani Karhumaki ◽  
Yury Lifshits ◽  
Wojciech Rytter

International audience We contribute to combinatorics and algorithmics of words by introducing new types of periodicities in words. A tiling period of a word w is partial word u such that w can be decomposed into several disjoint parallel copies of u, e.g. a lozenge b is a tiling period of a a b b. We investigate properties of tiling periodicities and design an algorithm working in O(n log (n) log log (n)) time which finds a tiling period of minimal size, the number of such minimal periods and their compact representation. The combinatorics of tiling periods differs significantly from that for classical full periods, for example unlike the classical case the same word can have many different primitive tiling periods. We consider also a related new type of periods called in the paper multi-periods. As a side product of the paper we solve an open problem posted by T. Harju (2003).


2011 ◽  
Vol Vol. 13 no. 4 ◽  
Author(s):  
Thomas P. Hayes

special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity International audience For every positive integer k, we construct an explicit family of functions f : \0, 1\(n) -\textgreater \0, 1\ which has (k + 1) - party communication complexity O(k) under every partition of the input bits into k + 1 parts of equal size, and k-party communication complexity Omega (n/k(4)2(k)) under every partition of the input bits into k parts. This improves an earlier hierarchy theorem due to V. Grolmusz. Our construction relies on known explicit constructions for a famous open problem of K. Zarankiewicz, namely, to find the maximum number of edges in a graph on n vertices that does not contain K-s,K-t as a subgraph.


2005 ◽  
Vol Vol. 7 ◽  
Author(s):  
Kumar Neeraj Verma ◽  
Jean Goubault-Larrecq

International audience We study BVASS (Branching VASS) which extend VASS (Vector Addition Systems with States) by allowing addition transitions that merge two configurations. Runs in BVASS are tree-like structures instead of linear ones as for VASS. We show that the construction of Karp-Miller trees for VASS can be extended to BVASS. This entails that the coverability set for BVASS is computable. This allows us to obtain decidability results for certain classes of equational tree automata with an associative-commutative symbol. Recent independent work by de Groote et al. implies that decidability of reachability in BVASS is equivalent to decidability of provability in MELL (multiplicative exponential linear logic), which is still an open problem. Hence our results are also a step towards answering this question in the affirmative.


2007 ◽  
Vol Vol. 9 no. 2 ◽  
Author(s):  
Vincent Vajnovszki

International audience At the 4th Conference on Combinatorics on Words, Christophe Reutenauer posed the question of whether the dual reflected order yields a Gray code on the Lyndon family. In this paper we give a positive answer. More precisely, we present an O(1)-average-time algorithm for generating length n binary pre-necklaces, necklaces and Lyndon words in Gray code order.


2007 ◽  
Vol Vol. 9 no. 1 (Analysis of Algorithms) ◽  
Author(s):  
Chris Worman ◽  
Boting Yang

Analysis of Algorithms International audience We consider questions concerning the tileability of orthogonal polygons with colored dominoes. A colored domino is a rotatable 2 × 1 rectangle that is partitioned into two unit squares, which are called faces, each of which is assigned a color. In a colored domino tiling of an orthogonal polygon P, a set of dominoes completely covers P such that no dominoes overlap and so that adjacent faces have the same color. We demonstrated that for simple layout polygons that can be tiled with colored dominoes, two colors are always sufficient. We also show that for tileable non-simple layout polygons, four colors are always sufficient and sometimes necessary. We describe an O(n) time algorithm for computing a colored domino tiling of a simple orthogonal polygon, if such a tiling exists, where n is the number of dominoes used in the tiling. We also show that deciding whether or not a non-simple orthogonal polygon can be tiled with colored dominoes is NP-complete.


Sign in / Sign up

Export Citation Format

Share Document