scholarly journals Probe interval graphs and probe unit interval graphs on superclasses of cographs

2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Flavia Bonomo ◽  
Guillermo Durán ◽  
Luciano N. Grippo ◽  
Martın D. Safe

Graph Theory International audience A graph is probe (unit) interval if its vertices can be partitioned into two sets: a set of probe vertices and a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set and it is possible to obtain a (unit) interval graph by adding edges with both endpoints in the set of nonprobe vertices. Probe (unit) interval graphs form a superclass of (unit) interval graphs. Probe interval graphs were introduced by Zhang for an application concerning the physical mapping of DNA in the human genome project. The main results of this article are minimal forbidden induced subgraphs characterizations of probe interval and probe unit interval graphs within two superclasses of cographs: P4-tidy graphs and tree-cographs. Furthermore, we introduce the concept of graphs class with a companion which allows to describe all the minimally non-(probe G) graphs with disconnected complement for every graph class G with a companion.

2010 ◽  
Vol Vol. 12 no. 5 (Graph and Algorithms) ◽  
Author(s):  
David E. Brown ◽  
Arthur H. Busch ◽  
Garth Isaak

Graphs and Algorithms International audience A graph is a probe interval graph if its vertices can be partitioned into probes and nonprobes with an interval associated to each vertex so that vertices are adjacent if and only if their corresponding intervals intersect and at least one of them is a probe. A graph G = (V, E) is a tolerance graph if each vertex v is an element of V can be associated to an interval I(v) of the real line and a positive real number t(v) such that uv is an element of E if and only if vertical bar I(u) boolean AND I(v)vertical bar >= min \t(u), t(v)\. In this paper we present O(vertical bar V vertical bar + vertical bar E vertical bar) recognition algorithms for both bipartite probe interval graphs and bipartite tolerance graphs. We also give a new structural characterization for each class which follows from the algorithms.


10.37236/8211 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Angèle M. Foley ◽  
Chính T. Hoàng ◽  
Owen D. Merkel

In the mid-1990s, Stanley and Stembridge conjectured that the chromatic symmetric functions of claw-free co-comparability (also called incomparability) graphs were $e$-positive. The quest for the proof of this conjecture has led to an examination of other, related graph classes. In 2013 Guay-Paquet proved that if unit interval graphs are $e$-positive, that implies claw-free incomparability graphs are as well. Inspired by this approach, we consider a related case and prove  that unit interval graphs whose complement is also a unit interval graph are $e$-positive.   We introduce the concept of strongly $e$-positive to denote a graph whose induced subgraphs are all $e$-positive, and conjecture that a graph is strongly $e$-positive if and only if it is (claw, net)-free.  


10.37236/6701 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Monique Laurent ◽  
Matteo Seminaroti ◽  
Shin-ichi Tanigawa

A symmetric matrix is Robinsonian if its rows and columns can be simultaneously reordered in such a way that entries are monotone nondecreasing in rows and columns when moving toward the diagonal. The adjacency matrix of a graph is Robinsonian precisely when the graph is a unit interval graph, so that Robinsonian matrices form a matrix analogue of the class of unit interval graphs. Here we provide a structural characterization for Robinsonian matrices in terms of forbidden substructures, extending the notion of  asteroidal triples to weighted graphs. This implies the known characterization of unit interval graphs and leads to an efficient algorithm for certifying that a matrix is not Robinsonian.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Flavia Bonomo ◽  
Celina M. H. Figueiredo ◽  
Guillermo Duran ◽  
Luciano N. Grippo ◽  
Martín D. Safe ◽  
...  

Graph Theory International audience Given a class G of graphs, probe G graphs are defined as follows. A graph G is probe G if there exists a partition of its vertices into a set of probe vertices and a stable set of nonprobe vertices in such a way that non-edges of G, whose endpoints are nonprobe vertices, can be added so that the resulting graph belongs to G. We investigate probe 2-clique graphs and probe diamond-free graphs. For probe 2-clique graphs, we present a polynomial-time recognition algorithm. Probe diamond-free graphs are characterized by minimal forbidden induced subgraphs. As a by-product, it is proved that the class of probe block graphs is the intersection between the classes of chordal graphs and probe diamond-free graphs.


10.37236/5862 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Pavel Klavik ◽  
Maria Saumell

Interval graphs are intersection graphs of closed intervals. A generalization of recognition called partial representation extension was introduced recently. The input gives an interval graph with a partial representation specifying some pre-drawn intervals.  We ask whether the remaining intervals can be added to create an extending representation. Two linear-time algorithms are known for solving this problem. In this paper, we characterize the minimal obstructions which make partial representations non-extendible. This generalizes Lekkerkerker and Boland's characterization of the minimal forbidden induced subgraphs of interval graphs. Each minimal obstruction consists of a forbidden induced subgraph together with at most four pre-drawn intervals. A Helly-type result follows: A partial representation is extendible if and only if every quadruple of pre-drawn intervals is extendible by itself. Our characterization leads to a linear-time certifying algorithm for partial representation extension.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Ryuji Hamamoto

The Human Genome Project, completed in 2003 by an international consortium, is considered one of the most important achievements for mankind in the 21st century [...]


Sign in / Sign up

Export Citation Format

Share Document