scholarly journals A note on contracting claw-free graphs

2013 ◽  
Vol Vol. 15 no. 2 (Discrete Algorithms) ◽  
Author(s):  
Jiří Fiala ◽  
Marcin Kamiński ◽  
Daniël Paulusma

Discrete Algorithms International audience A graph containment problem is to decide whether one graph called the host graph can be modified into some other graph called the target graph by using a number of specified graph operations. We consider edge deletions, edge contractions, vertex deletions and vertex dissolutions as possible graph operations permitted. By allowing any combination of these four operations we capture the following problems: testing on (induced) minors, (induced) topological minors, (induced) subgraphs, (induced) spanning subgraphs, dissolutions and contractions. We show that these problems stay NP-complete even when the host and target belong to the class of line graphs, which form a subclass of the class of claw-free graphs, i.e., graphs with no induced 4-vertex star. A natural question is to study the computational complexity of these problems if the target graph is assumed to be fixed. We show that these problems may become computationally easier when the host graphs are restricted to be claw-free. In particular we consider the problems that are to test whether a given host graph contains a fixed target graph as a contraction.

2014 ◽  
Vol Vol. 16 no. 3 (Graph Theory) ◽  
Author(s):  
Oleg Duginov

Graph Theory International audience Given a graph and a positive integer k, the biclique vertex-partition problem asks whether the vertex set of the graph can be partitioned into at most k bicliques (connected complete bipartite subgraphs). It is known that this problem is NP-complete for bipartite graphs. In this paper we investigate the computational complexity of this problem in special subclasses of bipartite graphs. We prove that the biclique vertex-partition problem is polynomially solvable for bipartite permutation graphs, bipartite distance-hereditary graphs and remains NP-complete for perfect elimination bipartite graphs and bipartite graphs containing no 4-cycles as induced subgraphs.


2013 ◽  
Vol Vol. 15 no. 2 (Discrete Algorithms) ◽  
Author(s):  
Edyta Szymańska

Discrete Algorithms International audience In this paper we consider the problem of deciding whether a given r-uniform hypergraph H with minimum vertex degree at least c\binom|V(H)|-1r-1, or minimum degree of a pair of vertices at least c\binom|V(H)|-2r-2, has a vertex 2-coloring. Motivated by an old result of Edwards for graphs, we obtain first optimal dichotomy results for 2-colorings of r-uniform hypergraphs. For each problem, for every r≥q 3 we determine a threshold value depending on r such that the problem is NP-complete for c below the threshold, while for c strictly above the threshold it is polynomial. We provide an algorithm constructing the coloring with time complexity O(n^\lfloor 4/ε\rfloor+2\log n) with some ε>0. This algorithm becomes more efficient in the case of r=3,4,5 due to known Turán numbers of the triangle and the Fano plane. In addition, we determine the computational complexity of strong k-coloring of 3-uniform hypergraphs H with minimum vertex degree at least c\binom|V(H)|-12, for some c, leaving a gap for k≥q 5 which vanishes as k→ ∞.


2008 ◽  
Vol Vol. 10 no. 3 (Graph and Algorithms) ◽  
Author(s):  
Dariusz Dereniowski ◽  
Adam Nadolski

Graphs and Algorithms International audience We study two variants of edge-coloring of edge-weighted graphs, namely compact edge-coloring and circular compact edge-coloring. First, we discuss relations between these two coloring models. We prove that every outerplanar bipartite graph admits a compact edge-coloring and that the decision problem of the existence of compact circular edge-coloring is NP-complete in general. Then we provide a polynomial time 1:5-approximation algorithm and pseudo-polynomial exact algorithm for compact circular coloring of odd cycles and prove that it is NP-hard to optimally color these graphs. Finally, we prove that if a path P2 is joined by an edge to an odd cycle then the problem of the existence of a compact circular coloring becomes NP-complete.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Laurent Gourvès ◽  
Adria Lyra ◽  
Carlos A. Martinhon ◽  
Jérôme Monnot

Graph Theory International audience In this paper we deal from an algorithmic perspective with different questions regarding properly edge-colored (or PEC) paths, trails and closed trails. Given a c-edge-colored graph G(c), we show how to polynomially determine, if any, a PEC closed trail subgraph whose number of visits at each vertex is specified before hand. As a consequence, we solve a number of interesting related problems. For instance, given subset S of vertices in G(c), we show how to maximize in polynomial time the number of S-restricted vertex (resp., edge) disjoint PEC paths (resp., trails) in G(c) with endpoints in S. Further, if G(c) contains no PEC closed trails, we show that the problem of finding a PEC s-t trail visiting a given subset of vertices can be solved in polynomial time and prove that it becomes NP-complete if we are restricted to graphs with no PEC cycles. We also deal with graphs G(c) containing no (almost) PEC cycles or closed trails through s or t. We prove that finding 2 PEC s-t paths (resp., trails) with length at most L > 0 is NP-complete in the strong sense even for graphs with maximum degree equal to 3 and present an approximation algorithm for computing k vertex (resp., edge) disjoint PEC s-t paths (resp., trails) so that the maximum path (resp., trail) length is no more than k times the PEC path (resp., trail) length in an optimal solution. Further, we prove that finding 2 vertex disjoint s-t paths with exactly one PEC s-t path is NP-complete. This result is interesting since as proved in Abouelaoualim et. al.(2008), the determination of two or more vertex disjoint PEC s-t paths can be done in polynomial time. Finally, if G(c) is an arbitrary c-edge-colored graph with maximum vertex degree equal to four, we prove that finding two monochromatic vertex disjoint s-t paths with different colors is NP-complete. We also propose some related problems.


2010 ◽  
Vol Vol. 12 no. 1 ◽  
Author(s):  
Therese Biedl ◽  
Michal Stern

International audience Edge-intersection graphs of paths in grids are graphs that can be represented such that vertices are paths in a grid and edges between vertices of the graph exist whenever two grid paths share a grid edge. This type of graphs is motivated by applications in conflict resolution of paths in grid networks. In this paper, we continue the study of edge-intersection graphs of paths in a grid, which was initiated by Golumbic, Lipshteyn and Stern. We show that for any k, if the number of bends in each path is restricted to be at most k, then not all graphs can be represented. Then we study some graph classes that can be represented with k-bend paths, for small k. We show that every planar graph has a representation with 5-bend paths, every outerplanar graph has a representation with 3-bend paths, and every planar bipartite graph has a representation with 2-bend paths. We also study line graphs, graphs of bounded pathwidth, and graphs with -regular edge orientations.


2011 ◽  
Vol Vol. 13 no. 4 ◽  
Author(s):  
Gabor Horvath ◽  
Csaba Szabo

special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity International audience We prove that the extended equivalence problem is solvable in polynomial time for finite nilpotent groups, and coNP-complete, otherwise. We prove that the extended equation solvability problem is solvable in polynomial time for finite nilpotent groups, and NP-complete, otherwise.


2015 ◽  
Vol Vol. 17 no. 1 (Discrete Algorithms) ◽  
Author(s):  
Gregory R. Maloney

Discrete Algorithms International audience A method is described for constructing, with computer assistance, planar substitution tilings that have n-fold rotational symmetry. This method uses as prototiles the set of rhombs with angles that are integer multiples of pi/n, and includes various special cases that have already been constructed by hand for low values of n. An example constructed by this method for n = 11 is exhibited; this is the first substitution tiling with elevenfold symmetry appearing in the literature.


2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Bill Rosgen ◽  
Lorna Stewart

Graphs and Algorithms International audience A graph class has few cliques if there is a polynomial bound on the number of maximal cliques contained in any member of the class. This restriction is equivalent to the requirement that any graph in the class has a polynomial sized intersection representation that satisfies the Helly property. On any such class of graphs, some problems that are NP-complete on general graphs, such as the maximum clique problem and the maximum weighted clique problem, admit polynomial time algorithms. Other problems, such as the vertex clique cover and edge clique cover problems remain NP-complete on these classes. Several classes of graphs which have few cliques are discussed, and the complexity of some partitioning and covering problems are determined for the class of all graphs which have fewer cliques than a given polynomial bound.


2007 ◽  
Vol Vol. 9 no. 1 (Analysis of Algorithms) ◽  
Author(s):  
Chris Worman ◽  
Boting Yang

Analysis of Algorithms International audience We consider questions concerning the tileability of orthogonal polygons with colored dominoes. A colored domino is a rotatable 2 × 1 rectangle that is partitioned into two unit squares, which are called faces, each of which is assigned a color. In a colored domino tiling of an orthogonal polygon P, a set of dominoes completely covers P such that no dominoes overlap and so that adjacent faces have the same color. We demonstrated that for simple layout polygons that can be tiled with colored dominoes, two colors are always sufficient. We also show that for tileable non-simple layout polygons, four colors are always sufficient and sometimes necessary. We describe an O(n) time algorithm for computing a colored domino tiling of a simple orthogonal polygon, if such a tiling exists, where n is the number of dominoes used in the tiling. We also show that deciding whether or not a non-simple orthogonal polygon can be tiled with colored dominoes is NP-complete.


2009 ◽  
Vol Vol. 11 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Petr Gregor ◽  
Riste Škrekovski

Graphs and Algorithms International audience In this paper, we study long cycles in induced subgraphs of hypercubes obtained by removing a given set of faulty vertices such that every two faults are distant. First, we show that every induced subgraph of Q(n) with minimum degree n - 1 contains a cycle of length at least 2(n) - 2(f) where f is the number of removed vertices. This length is the best possible when all removed vertices are from the same bipartite class of Q(n). Next, we prove that every induced subgraph of Q(n) obtained by removing vertices of some given set M of edges of Q(n) contains a Hamiltonian cycle if every two edges of M are at distance at least 3. The last result shows that the shell of every linear code with odd minimum distance at least 3 contains a Hamiltonian cycle. In all these results we obtain significantly more tolerable faulty vertices than in the previously known results. We also conjecture that every induced subgraph of Q(n) obtained by removing a balanced set of vertices with minimum distance at least 3 contains a Hamiltonian cycle.


Sign in / Sign up

Export Citation Format

Share Document