scholarly journals On the tileability of polygons with colored dominoes

2007 ◽  
Vol Vol. 9 no. 1 (Analysis of Algorithms) ◽  
Author(s):  
Chris Worman ◽  
Boting Yang

Analysis of Algorithms International audience We consider questions concerning the tileability of orthogonal polygons with colored dominoes. A colored domino is a rotatable 2 × 1 rectangle that is partitioned into two unit squares, which are called faces, each of which is assigned a color. In a colored domino tiling of an orthogonal polygon P, a set of dominoes completely covers P such that no dominoes overlap and so that adjacent faces have the same color. We demonstrated that for simple layout polygons that can be tiled with colored dominoes, two colors are always sufficient. We also show that for tileable non-simple layout polygons, four colors are always sufficient and sometimes necessary. We describe an O(n) time algorithm for computing a colored domino tiling of a simple orthogonal polygon, if such a tiling exists, where n is the number of dominoes used in the tiling. We also show that deciding whether or not a non-simple orthogonal polygon can be tiled with colored dominoes is NP-complete.

2014 ◽  
Vol Vol. 16 no. 2 (PRIMA 2013) ◽  
Author(s):  
Xuegang Chen ◽  
Jing Huang

Special issue PRIMA 2013 International audience As a common generalization of bipartite and split graphs, monopolar graphs are defined in terms of the existence of certain vertex partitions. It has been shown that to determine whether a graph has such a partition is NP-complete for general graphs and polynomial for several classes of graphs. In this paper, we investigate graphs that admit a unique such partition and call them uniquely monopolar-partitionable graphs. By employing a tree trimming technique, we obtain a characterization of uniquely monopolar-partitionable block graphs. Our characterization implies a polynomial time algorithm for recognizing them.


1997 ◽  
Vol 07 (05) ◽  
pp. 473-484 ◽  
Author(s):  
J. Mark Keil

Given a simply connected orthogonal polygon P, a polynomial time algorithm is presented to cover the polygon with the minimum number of rectangles, under the restriction that if A and B are two overlapping rectangles in the cover then either A - B or B - A is connected. The algorithm runs in O(n log n + nm) time, where n is the number of vertices of P and m is the number of edges in the visibility graph of P that are either horizontal, vertical or form the diagonal of an empty rectangle.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Xinyue Liu ◽  
Huiqin Jiang ◽  
Pu Wu ◽  
Zehui Shao

For a simple graph G=(V,E) with no isolated vertices, a total Roman {3}-dominating function(TR3DF) on G is a function f:V(G)→{0,1,2,3} having the property that (i) ∑w∈N(v)f(w)≥3 if f(v)=0; (ii) ∑w∈N(v)f(w)≥2 if f(v)=1; and (iii) every vertex v with f(v)≠0 has a neighbor u with f(u)≠0 for every vertex v∈V(G). The weight of a TR3DF f is the sum f(V)=∑v∈V(G)f(v) and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman {3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we present a linear-time algorithm to compute the value of γt{R3} for trees.


Author(s):  
Mohsen Alambardar Meybodi

A set [Formula: see text] of a graph [Formula: see text] is called an efficient dominating set of [Formula: see text] if every vertex [Formula: see text] has exactly one neighbor in [Formula: see text], in other words, the vertex set [Formula: see text] is partitioned to some circles with radius one such that the vertices in [Formula: see text] are the centers of partitions. A generalization of this concept, introduced by Chellali et al. [k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122], is called [Formula: see text]-efficient dominating set that briefly partitions the vertices of graph with different radiuses. It leads to a partition set [Formula: see text] such that each [Formula: see text] consists a center vertex [Formula: see text] and all the vertices in distance [Formula: see text], where [Formula: see text]. In other words, there exist the dominators with various dominating powers. The problem of finding minimum set [Formula: see text] is called the minimum [Formula: see text]-efficient domination problem. Given a positive integer [Formula: see text] and a graph [Formula: see text], the [Formula: see text]-efficient Domination Decision problem is to decide whether [Formula: see text] has a [Formula: see text]-efficient dominating set of cardinality at most [Formula: see text]. The [Formula: see text]-efficient Domination Decision problem is known to be NP-complete even for bipartite graphs [M. Chellali, T. W. Haynes and S. Hedetniemi, k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122]. Clearly, every graph has a [Formula: see text]-efficient dominating set but it is not correct for efficient dominating set. In this paper, we study the following: [Formula: see text]-efficient domination problem set is NP-complete even in chordal graphs. A polynomial-time algorithm for [Formula: see text]-efficient domination in trees. [Formula: see text]-efficient domination on sparse graphs from the parametrized complexity perspective. In particular, we show that it is [Formula: see text]-hard on d-degenerate graphs while the original dominating set has Fixed Parameter Tractable (FPT) algorithm on d-degenerate graphs. [Formula: see text]-efficient domination on nowhere-dense graphs is FPT.


2008 ◽  
Vol Vol. 10 no. 3 (Graph and Algorithms) ◽  
Author(s):  
Dariusz Dereniowski ◽  
Adam Nadolski

Graphs and Algorithms International audience We study two variants of edge-coloring of edge-weighted graphs, namely compact edge-coloring and circular compact edge-coloring. First, we discuss relations between these two coloring models. We prove that every outerplanar bipartite graph admits a compact edge-coloring and that the decision problem of the existence of compact circular edge-coloring is NP-complete in general. Then we provide a polynomial time 1:5-approximation algorithm and pseudo-polynomial exact algorithm for compact circular coloring of odd cycles and prove that it is NP-hard to optimally color these graphs. Finally, we prove that if a path P2 is joined by an edge to an odd cycle then the problem of the existence of a compact circular coloring becomes NP-complete.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Laurent Gourvès ◽  
Adria Lyra ◽  
Carlos A. Martinhon ◽  
Jérôme Monnot

Graph Theory International audience In this paper we deal from an algorithmic perspective with different questions regarding properly edge-colored (or PEC) paths, trails and closed trails. Given a c-edge-colored graph G(c), we show how to polynomially determine, if any, a PEC closed trail subgraph whose number of visits at each vertex is specified before hand. As a consequence, we solve a number of interesting related problems. For instance, given subset S of vertices in G(c), we show how to maximize in polynomial time the number of S-restricted vertex (resp., edge) disjoint PEC paths (resp., trails) in G(c) with endpoints in S. Further, if G(c) contains no PEC closed trails, we show that the problem of finding a PEC s-t trail visiting a given subset of vertices can be solved in polynomial time and prove that it becomes NP-complete if we are restricted to graphs with no PEC cycles. We also deal with graphs G(c) containing no (almost) PEC cycles or closed trails through s or t. We prove that finding 2 PEC s-t paths (resp., trails) with length at most L > 0 is NP-complete in the strong sense even for graphs with maximum degree equal to 3 and present an approximation algorithm for computing k vertex (resp., edge) disjoint PEC s-t paths (resp., trails) so that the maximum path (resp., trail) length is no more than k times the PEC path (resp., trail) length in an optimal solution. Further, we prove that finding 2 vertex disjoint s-t paths with exactly one PEC s-t path is NP-complete. This result is interesting since as proved in Abouelaoualim et. al.(2008), the determination of two or more vertex disjoint PEC s-t paths can be done in polynomial time. Finally, if G(c) is an arbitrary c-edge-colored graph with maximum vertex degree equal to four, we prove that finding two monochromatic vertex disjoint s-t paths with different colors is NP-complete. We also propose some related problems.


2015 ◽  
Vol 25 (04) ◽  
pp. 299-308
Author(s):  
Frank Duque ◽  
Carlos Hidalgo-Toscano

A variation on the classical polygon illumination problem was introduced in [Aichholzer et al. EuroCG’09]. In this variant light sources are replaced by wireless devices called [Formula: see text]-modems, which can penetrate a fixed number [Formula: see text], of “walls”. A point in the interior of a polygon is “illuminated” by a [Formula: see text]-modem if the line segment joining them intersects at most [Formula: see text] edges of the polygon. It is easy to construct polygons of [Formula: see text] vertices where the number of [Formula: see text]-modems required to illuminate all interior points is [Formula: see text]. However, no non-trivial upper bound is known. In this paper we prove that the number of kmodems required to illuminate any polygon of [Formula: see text] vertices is [Formula: see text]. For the cases of illuminating an orthogonal polygon or a set of disjoint orthogonal segments, we give a tighter bound of [Formula: see text]. Moreover, we present an [Formula: see text] time algorithm to achieve this bound.


2011 ◽  
Vol 21 (01) ◽  
pp. 87-100
Author(s):  
GREG ALOUPIS ◽  
PROSENJIT BOSE ◽  
ERIK D. DEMAINE ◽  
STEFAN LANGERMAN ◽  
HENK MEIJER ◽  
...  

Given a planar polygon (or chain) with a list of edges {e1, e2, e3, …, en-1, en}, we examine the effect of several operations that permute this edge list, resulting in the formation of a new polygon. The main operations that we consider are: reversals which involve inverting the order of a sublist, transpositions which involve interchanging subchains (sublists), and edge-swaps which are a special case and involve interchanging two consecutive edges. When each edge of the given polygon has also been assigned a direction we say that the polygon is signed. In this case any edge involved in a reversal changes direction. We show that a star-shaped polygon can be convexified using O(n2) edge-swaps, while maintaining simplicity, and that this is tight in the worst case. We show that determining whether a signed polygon P can be transformed to one that has rotational or mirror symmetry with P, using transpositions, takes Θ(n log n) time. We prove that the problem of deciding whether transpositions can modify a polygon to fit inside a rectangle is weakly NP-complete. Finally we give an O(n log n) time algorithm to compute the maximum endpoint distance for an oriented chain.


10.37236/104 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
E. R. Vaughan

Gerechte designs are a specialisation of latin squares. A gerechte design is an $n\times n$ array containing the symbols $\{1,\dots,n\}$, together with a partition of the cells of the array into $n$ regions of $n$ cells each. The entries in the cells are required to be such that each row, column and region contains each symbol exactly once. We show that the problem of deciding if a gerechte design exists for a given partition of the cells is NP-complete. It follows that there is no polynomial time algorithm for finding gerechte designs with specified partitions unless P=NP.


2011 ◽  
Vol Vol. 13 no. 4 ◽  
Author(s):  
Gabor Horvath ◽  
Csaba Szabo

special issue in honor of Laci Babai's 60th birthday: Combinatorics, Groups, Algorithms, and Complexity International audience We prove that the extended equivalence problem is solvable in polynomial time for finite nilpotent groups, and coNP-complete, otherwise. We prove that the extended equation solvability problem is solvable in polynomial time for finite nilpotent groups, and NP-complete, otherwise.


Sign in / Sign up

Export Citation Format

Share Document