scholarly journals From generalized Tamari intervals to non-separable planar maps

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Wenjie Fang ◽  
Louis-François Préville-Ratelle

International audience Let v be a grid path made of north and east steps. The lattice TAM(v), based on all grid paths weakly above the grid path v sharing the same endpoints as v, was introduced by Pre ́ville-Ratelle and Viennot (2014) and corresponds to the usual Tamari lattice in the case v = (NE)n. They showed that TAM(v) is isomorphic to the dual of TAM(←−v ), where ←−v is the reverse of v with N and E exchanged. Our main contribution is a bijection from intervals in TAM(v) to non-separable planar maps. It follows that the number of intervals in TAM(v) over all v of length n is 2(3n+3)! (n+2)!(2n+3)! . This formula was first obtained by Tutte(1963) for non-separable planar maps.


2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Cedric Chauve

International audience Constellations are colored planar maps that generalize different families of maps (planar maps, bipartite planar maps, bi-Eulerian planar maps, planar cacti, ...) and are strongly related to factorizations of permutations. They were recently studied by Bousquet-Mélou and Schaeffer who describe a correspondence between these maps and a family of trees, called Eulerian trees. In this paper, we derive from their result a relationship between planar constellations and another family of trees, called stellar trees. This correspondence generalizes a well known result for planar cacti, and shows that planar constellations are colored Lagrangian objects (that is objects that can be enumerated by the Good-Lagrange formula). We then deduce from this result a new formula for the number of planar constellations having a given face distribution, different from the formula one can derive from the results of Bousquet-Mélou and Schaeffer, along with systems of functional equations for the generating functions of bipartite and bi-Eulerian planar maps enumerated according to the partition of faces and vertices.



2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Eric Fusy

International audience This article describes new bijective links on planar maps, which are of incremental complexity and present original features. The first two bijections $\Phi _{1,2}$ are correspondences on oriented planar maps. They can be considered as variations on the classical edge-poset construction for bipolar orientations on graphs, suitably adapted so as to operate only on the embeddings in a simple local way. In turn, $\Phi_{1,2}$ yield two new bijections $F_{1,2}$ between families of (rooted) maps. (i) By identifying maps with specific constrained orientations, $\Phi_2 \circ \Phi_1$ specialises to a bijection $F_1$ between 2-connected maps and irreducible triangulations; (ii) $F_1$ gives rise to a bijection $F_2$ between loopless maps and triangulations, observing that these decompose respectively into 2-connected maps and into irreducible triangulations in a parallel way. Cet article décrit de nouveaux liens bijectifs sur les cartes planaires. Nos constructions sont de complexité croissante et présentent des caractéristiques originales. Les deux premières bijections $\Phi _{1,2}$ portent sur des cartes orientées. Elle peuvent être vues comme des variations sur une construction classique de posets sans $N$ à partir d'orientations bipolaires, adaptées ici pour opérer de manière très simple sur le plongement. Les bijections $\Phi _{1,2}$ entrainent à leur tour deux nouvelles bijections $F_{1,2}$ entre familles de cartes (enracinées). (i) En identifiant les cartes avec certaines orientations contraintes, $\Phi_2 \circ \Phi_1$ se spécialise en une bijection $F_1$ entre cartes 2-connexes et triangulations irréductibles, (ii) $F_1$ induit une bijection $F_2$ entre cartes sans boucles et triangulations, qui se décomposent respectivement en cartes 2-connexes et en triangulations irréductibles de manière parallèle.



2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Henri Mühle ◽  
Nathan Williams

International audience We present a generalization of the Tamari lattice to parabolic quotients of the symmetric group. More precisely, we generalize the notions of 231-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients, and show bijectively that these sets are equinumerous. Furthermore, the restriction of weak order on the parabolic quotient to the parabolic 231-avoiding permutations is a lattice quotient. Lastly, we suggest how to extend these constructions to all Coxeter groups. Nous présentons une généralisation du treillis de Tamari aux quotients paraboliques du groupe symétrique. Plus précisément, nous généralisons les notions de permutations qui évitent le motif 231, les partitions non-croisées, et les partitions non-emboîtées aux quotients paraboliques, et nous montrons de façon bijective que ces ensembles sont équipotents. En restreignant l’ordre faible du quotient parabolique aux permutations paraboliques qui évitent le motif 231, on obtient un quotient de treillis d’ordre faible. Enfin, nous suggérons comment étendre ces constructions à tous les groupes de Coxeter.



2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Samuele Giraudo

International audience We show that the set of balanced binary trees is closed by interval in the Tamari lattice. We establish that the intervals $[T_0, T_1]$ where $T_0$ and $T_1$ are balanced trees are isomorphic as posets to a hypercube. We introduce tree patterns and synchronous grammars to get a functional equation of the generating series enumerating balanced tree intervals. Nous montrons que l'ensemble des arbres équilibrés est clos par intervalle dans le treillis de Tamari. Nous caractérisons la forme des intervalles du type $[T_0, T_1]$ où $T_0$ et $T_1$ sont équilibrés en montrant qu'en tant qu'ensembles partiellement ordonnés, ils sont isomorphes à un hypercube. Nous introduisons la notion de motif d'arbre et de grammaire synchrone dans le but d'établir une équation fonctionnelle de la série génératrice qui dénombre les intervalles d'arbres équilibrés.



2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Grégory Miermont

International audience We show a new invariance principle for the radius and other functionals of a class of conditioned `Boltzmann-Gibbs'-distributed random planar maps. It improves over the more restrictive case of bipartite maps that was discussed in Marckert and Miermont (2006). As in the latter paper, we make use of a bijection between planar maps and a class of labelled multitype trees, due to Bouttier et al. (2004). We also rely on an invariance principle for multitype spatial Galton-Watson trees, which is proved in a companion paper.



2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Gwendal Collet ◽  
Eric Fusy

International audience We obtain a very simple formula for the generating function of bipartite (resp. quasi-bipartite) planar maps with boundaries (holes) of prescribed lengths, which generalizes certain expressions obtained by Eynard in a book to appear. The formula is derived from a bijection due to Bouttier, Di Francesco and Guitter combined with a process (reminiscent of a construction of Pitman) of aggregating connected components of a forest into a single tree. Nous obtenons une formule très simple pour la série génératrice des cartes biparties ayant des bords (trous) de tailles fixées, généralisant certaines expressions obtenues par Eynard dans un livre à paraître. Nous obtenons la formule à partir d'une bijection due à Bouttier, Di Francesco et Guitter, combinée avec un processus (dans l'esprit d'une construction due à Pitman) pour agréger les composantes connexes d'une forêt en un unique arbre.



2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Sebastian A. Csar ◽  
Rik Sengupta ◽  
Warut Suksompong

International audience We discuss some properties of a subposet of the Tamari lattice introduced by Pallo (1986), which we call the comb poset. We show that three binary functions that are not well-behaved in the Tamari lattice are remarkably well-behaved within an interval of the comb poset: rotation distance, meets and joins, and the common parse words function for a pair of trees. We relate this poset to a partial order on the symmetric group studied by Edelman (1989). Nous discutons d'un subposet du treillis de Tamari introduit par Pallo. Nous appellons ce poset le comb poset. Nous montrons que trois fonctions binaires qui ne se comptent pas bien dans le trellis de Tamari se comptent bien dans un intervalle du comb poset : distance dans le trellis de Tamari, le supremum et l'infimum et les parsewords communs. De plus, nous discutons un rapport entre ce poset et un ordre partiel dans le groupe symétrique étudié par Edelman.



2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Francois Viard

International audience We introduce a new family of complete lattices, arising from a digraph together with a valuation on its vertices and generalizing a previous construction of the author. We then apply this to the study of two long-standing conjectures of Dyer, and we provide a description of the Tamari lattice with this theory.



2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Jean-François Le Gall

International audience We discuss scaling limits of random planar maps chosen uniformly over the set of all $2p$-angulations with $n$ faces. This leads to a limiting space called the Brownian map, which is viewed as a random compact metric space. Although we are not able to prove the uniqueness of the distribution of the Brownian map, many of its properties can be investigated in detail. In particular, we obtain a complete description of the geodesics starting from the distinguished point called the root. We give applications to various properties of large random planar maps.



2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Frédéric Chapoton ◽  
Gregory Chatel ◽  
Viviane Pons

International audience We use a recently introduced combinatorial object, the $\textit{interval-poset}$, to describe two bijections on intervals of the Tamari lattice. Both bijections give a combinatorial proof of some previously known results. The first one is an inner bijection between Tamari intervals that exchanges the $\textit{initial rise}$ and $\textit{lower contacts}$ statistics. Those were introduced by Bousquet-Mélou, Fusy, and Préville-Ratelle who proved they were symmetrically distributed but had no combinatorial explanation. The second bijection sends a Tamari interval to a closed flow of an ordered forest. These combinatorial objects were studied by Chapoton in the context of the Pre-Lie operad and the connection with the Tamari order was still unclear. Nous utilisons les $\textit{intervalles-posets}$, très récemment introduits, pour décrire deux bijections sur les intervalles du treillis de Tamari. Nous obtenons ainsi des preuves combinatoires de précédents résultats. La première bijection est une opération interne sur les intervalles qui échange les statistiques de la $\textit{montée initiale}$ et du $\textit{nombre de contacts}$. Ces dernières ont été introduites par Bousquet-Mélou, Fusy et Préville-Ratelle qui ont prouvé qu’elles étaient symétriquement distribuées sans pour autant proposer d’explication combinatoire. La seconde bijection fait le lien avec un objet étudié par Chapoton dans le cadre de l’opérade Pré-Lie : les flots sur les forêts ordonnées. Le lien avec l’ordre de Tamari avait déjà été remarqué sans pour autant être expliqué.



Sign in / Sign up

Export Citation Format

Share Document