scholarly journals A bijection between planar constellations and some colored Lagrangian trees

2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Cedric Chauve

International audience Constellations are colored planar maps that generalize different families of maps (planar maps, bipartite planar maps, bi-Eulerian planar maps, planar cacti, ...) and are strongly related to factorizations of permutations. They were recently studied by Bousquet-Mélou and Schaeffer who describe a correspondence between these maps and a family of trees, called Eulerian trees. In this paper, we derive from their result a relationship between planar constellations and another family of trees, called stellar trees. This correspondence generalizes a well known result for planar cacti, and shows that planar constellations are colored Lagrangian objects (that is objects that can be enumerated by the Good-Lagrange formula). We then deduce from this result a new formula for the number of planar constellations having a given face distribution, different from the formula one can derive from the results of Bousquet-Mélou and Schaeffer, along with systems of functional equations for the generating functions of bipartite and bi-Eulerian planar maps enumerated according to the partition of faces and vertices.

2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Cedric Loi ◽  
Paul-Henry Cournède ◽  
Jean Françon

International audience The analysis of pattern occurrences has numerous applications, in particular in biology. In this article, a symbolic method is proposed to compute the distribution associated to the number of occurences of a specific pattern in a random text generated by a stochastic 0L-system. To that purpose, a semiring structure is set for combinatorial classes composed of weighted words. This algebraic structure relies on new union and concatenation operators which, under some assumptions, are admissible constructions. Decomposing the combinatorial classes of interest by using these binary operators enables the direct translation of specifications into a set of functional equations relating generating functions thanks to transformation rules. The article ends with two examples. The first one deals with unary patterns and the connection with multitype branching process is established. The second one is about a pattern composed of two letters and underlines the importance of writing a proper specification.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Sophie Burrill ◽  
Sergi Elizalde ◽  
Marni Mishna ◽  
Lily Yen

International audience We describe a generating tree approach to the enumeration and exhaustive generation of k-nonnesting set partitions and permutations. Unlike previous work in the literature using the connections of these objects to Young tableaux and restricted lattice walks, our approach deals directly with partition and permutation diagrams. We provide explicit functional equations for the generating functions, with k as a parameter. Nous décrivons une approche, basée sur l'utilisation d'arbres de génération, pour énumération et la génération exhaustive de partitions et permutations sans k-emboîtement. Contrairement aux travaux antérieurs qui reposent sur un lien entre ces objets, tableaux de Young et familles de chemins dans des treillis, notre approche traite directement partitions et diagrammes de permutations. Nous fournissons des équations fonctionnelles explicites pour les séries génératrices, avec k en tant que paramètre.


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Manuel Lladser

International audience Given an integer $m \geq 1$, let $\| \cdot \|$ be a norm in $\mathbb{R}^{m+1}$ and let $\mathbb{S}_+^m$ denote the set of points $\mathbf{d}=(d_0,\ldots,d_m)$ in $\mathbb{R}^{m+1}$ with nonnegative coordinates and such that $\| \mathbf{d} \|=1$. Consider for each $1 \leq j \leq m$ a function $f_j(z)$ that is analytic in an open neighborhood of the point $z=0$ in the complex plane and with possibly negative Taylor coefficients. Given $\mathbf{n}=(n_0,\ldots,n_m)$ in $\mathbb{Z}^{m+1}$ with nonnegative coordinates, we develop a method to systematically associate a parameter-varying integral to study the asymptotic behavior of the coefficient of $z^{n_0}$ of the Taylor series of $\prod_{j=1}^m \{f_j(z)\}^{n_j}$, as $\| \mathbf{n} \| \to \infty$. The associated parameter-varying integral has a phase term with well specified properties that make the asymptotic analysis of the integral amenable to saddle-point methods: for many $\mathbf{d} \in \mathbb{S}_+^m$, these methods ensure uniform asymptotic expansions for $[z^{n_0}] \prod_{j=1}^m \{f_j(z)\}^{n_j}$ provided that $\mathbf{n}/ \| \mathbf{n} \|$ stays sufficiently close to $\mathbf{d}$ as $\| \mathbf{n} \| \to \infty$. Our method finds applications in studying the asymptotic behavior of the coefficients of a certain multivariable generating functions as well as in problems related to the Lagrange inversion formula for instance in the context random planar maps.


10.37236/1691 ◽  
2003 ◽  
Vol 9 (2) ◽  
Author(s):  
Mireille Bousquet-Mélou

Many families of pattern-avoiding permutations can be described by a generating tree in which each node carries one integer label, computed recursively via a rewriting rule. A typical example is that of $123$-avoiding permutations. The rewriting rule automatically gives a functional equation satisfied by the bivariate generating function that counts the permutations by their length and the label of the corresponding node of the tree. These equations are now well understood, and their solutions are always algebraic series. Several other families of permutations can be described by a generating tree in which each node carries two integer labels. To these trees correspond other functional equations, defining 3-variate generating functions. We propose an approach to solving such equations. We thus recover and refine, in a unified way, some results on Baxter permutations, $1234$-avoiding permutations, $2143$-avoiding (or: vexillary) involutions and $54321$-avoiding involutions. All the generating functions we obtain are D-finite, and, more precisely, are diagonals of algebraic series. Vexillary involutions are exceptionally simple: they are counted by Motzkin numbers, and thus have an algebraic generating function. In passing, we exhibit an interesting link between Baxter permutations and the Tutte polynomial of planar maps.


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4833-4844 ◽  
Author(s):  
Eda Yuluklu ◽  
Yilmaz Simsek ◽  
Takao Komatsu

The aim of this paper is to give some new identities and relations related to the some families of special numbers such as the Bernoulli numbers, the Euler numbers, the Stirling numbers of the first and second kinds, the central factorial numbers and also the numbers y1(n,k,?) and y2(n,k,?) which are given Simsek [31]. Our method is related to the functional equations of the generating functions and the fermionic and bosonic p-adic Volkenborn integral on Zp. Finally, we give remarks and comments on our results.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michel Nguyên Thê

International audience This paper gives a survey of the limit distributions of the areas of different types of random walks, namely Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks, using the technology of generating functions only.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Hoda Bidkhori

International audience In this paper we study finite Eulerian posets which are binomial or Sheffer. These important classes of posets are related to the theory of generating functions and to geometry. The results of this paper are organized as follows: (1) We completely determine the structure of Eulerian binomial posets and, as a conclusion, we are able to classify factorial functions of Eulerian binomial posets; (2) We give an almost complete classification of factorial functions of Eulerian Sheffer posets by dividing the original question into several cases; (3) In most cases above, we completely determine the structure of Eulerian Sheffer posets, a result stronger than just classifying factorial functions of these Eulerian Sheffer posets. We also study Eulerian triangular posets. This paper answers questions posed by R. Ehrenborg and M. Readdy. This research is also motivated by the work of R. Stanley about recognizing the \emphboolean lattice by looking at smaller intervals. Nous étudions les ensembles partiellement ordonnés finis (EPO) qui sont soit binomiaux soit de type Sheffer (deux notions reliées aux séries génératrices et à la géométrie). Nos résultats sont les suivants: (1) nous déterminons la structure des EPO Euleriens et binomiaux; nous classifions ainsi les fonctions factorielles de tous ces EPO; (2) nous donnons une classification presque complète des fonctions factorielles des EPO Euleriens de type Sheffer; (3) dans la plupart de ces cas, nous déterminons complètement la structure des EPO Euleriens et Sheffer, ce qui est plus fort que classifier leurs fonctions factorielles. Nous étudions aussi les EPO Euleriens triangulaires. Cet article répond à des questions de R. Ehrenborg and M. Readdy. Il est aussi motivé par le travail de R. Stanley sur la reconnaissance du treillis booléen via l'étude des petits intervalles.


2014 ◽  
Vol 23 (6) ◽  
pp. 914-972 ◽  
Author(s):  
J. BOUTTIER ◽  
E. GUITTER

We consider the problem of enumeratingd-irreducible maps,i.e., planar maps all of whose cycles have length at leastd, and such that any cycle of lengthdis the boundary of a face of degreed. We develop two approaches in parallel: the natural approach via substitution, where these maps are obtained from general maps by a replacement of alld-cycles by elementary faces, and a bijective approach via slice decomposition, which consists in cutting the maps along shortest paths. Both lead to explicit expressions for the generating functions ofd-irreducible maps with controlled face degrees, summarized in some elegant ‘pointing formula’. We provide an equivalent description ofd-irreducible slices in terms of so-calledd-oriented trees. We finally show that irreducible maps give rise to a hierarchy of discrete integrable equations which include equations encountered previously in the context of naturally embedded trees.


2002 ◽  
Vol 16 (09) ◽  
pp. 1269-1299 ◽  
Author(s):  
A. C. OPPENHEIM ◽  
R. BRAK ◽  
A. L. OWCZAREK

We present results for the generating functions of single fully-directed walks on the triangular lattice, enumerated according to each type of step and weighted proportional to the area between the walk and the surface of a half-plane (wall), and the number of contacts made with the wall. We also give explicit formulae for total area generating functions, that is when the area is summed over all configurations with a given perimeter, and the generating function of the moments of heights above the wall (the first of which is the total area). These results generalise and summarise nearly all known results on the square lattice: all the square lattice results can be obtaining by setting one of the step weights to zero. Our results also contain as special cases those that already exist for the triangular lattice. In deriving some of the new results we utilise the Enumerating Combinatorial Objects (ECO) and marked area methods of combinatorics for obtaining functional equations in the most general cases. In several cases we give our results both in terms of ratios of infinite q-series and as continued fractions.


Sign in / Sign up

Export Citation Format

Share Document