scholarly journals Stability Analysis of Networked Control Systems with Multi-Packet Dropout based on Switched System Approach

Networked control system models with packet dropout in multi-packet transmission were established under hypothetical conditions in this paper, and the system was seen as a switched system. The causes of packet dropout in networked control system are analyzed in view of single-packet transmission and multi-packet transmission respectively. Based on Lyapunov stability theory, the property of the networked control system with multi-packet dropout was analyzed from the point of view of an asynchronous dynamic system. The method which determined the multi-packet dropout boundary to keep the system steady was given. The simulation results show the influences of multi-packet dropout on the system performance and prove the validity of the analytical method proposed in this paper.

2001 ◽  
Author(s):  
Octavian Beldiman ◽  
Linda G. Bushnell ◽  
Gregory C. Walsh ◽  
Hua O. Wang ◽  
Yiguang Hong

Abstract In this paper we study the effect of external perturbations on a networked control system. We start by assuming that the non-networked system without perturbation is exponentially stable. Then, for fast enough networks we show that if the perturbation is bounded the networked system is ultimately bounded and if the perturbation is vanishing then the networked system is asymptotically stable. We conclude the paper with simulations verifying the results.


2013 ◽  
Vol 321-324 ◽  
pp. 1858-1862 ◽  
Author(s):  
Li Sheng Wei ◽  
Zhi Hui Mei ◽  
Ming Jiang

This study focus on α-Stability constraints for uncertain networked control systems (NCSs) subject to disturbance inputs, where the network transmission is connected with time-delay and packet dropout. The overall NCSs model is derived. In order to obtain much less conservative results, the sufficient condition for feasibility is presented in term of 2nd Lyapunov stability theory and a set of linear matrix inequalities (LMIs). This LMI approach can be the optimization problem of computation of the maximal allowed bound on the time-delay for NCSs.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shuo Wang ◽  
Mei Yu ◽  
Hangfei Wang ◽  
Wen Tan

This paper investigates the relationship between the maximum allowable dropout bound and the quantization density. Networked Control System (NCS) is described as a time-delay switched system with constrained switching signals. A switched dynamic output feedback controller with prescribed disturbance attenuation level is designed via a cone complement linearization approach. A novel stability criterion is obtained by switched system theory. Furthermore, finding an appropriate quantization density used when packet dropout occurs is converted to an optimization problem.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhongda Lu ◽  
Lijing Wang ◽  
Fengbin Zhang ◽  
Fengxia Xu

This paper considers the stability andH∞control problem of networked control systems with time delay. Taking into account the influence of network with delay, unknown input disturbance, and uncertainties of the system modeling, meanwhile we establish a precise, closed-loop model for networked control systems with time delay. By selecting a proper Lyapunov-Krasovskii function and using Lyapunov theorem, a sufficient condition for stability of the system in the form of LMI is demonstrated, corresponding controller parameters are acquired, and the convergence of the control algorithm is proved. The simulation example shows that the construction of the network robust control system with time delay indeed improves the stability performance of the system, which indicates the effectiveness of the design.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Ashraf F. Khalil ◽  
Jihong Wang

Networked control system is a research area where the theory is behind practice. Closing the feedback loop through shared network induces time delay and some of the data could be lost. So the network induced time delay and data loss are inevitable in networked control Systems. The time delay may degrade the performance of control systems or even worse lead to system instability. Once the structure of a networked control system is confirmed, it is essential to identify the maximum time delay allowed for maintaining the system stability which, in turn, is also associated with the process of controller design. Some studies reported methods for estimating the maximum time delay allowed for maintaining system stability; however, most of the reported methods are normally overcomplicated for practical applications. A method based on the finite difference approximation is proposed in this paper for estimating the maximum time delay tolerance, which has a simple structure and is easy to apply.


2018 ◽  
Vol 40 (14) ◽  
pp. 3923-3932 ◽  
Author(s):  
Ling Huang ◽  
Min Sun

This paper studies the improved analysis and H∞ control for a class of networked control systems with time-varying delays and packet dropout via a quadratic convex combination approach. The newly proposed augmented Lyapunov–Krasovskii functional is constructed by using the quadratic terms multiplied by a third-degree scalar function. A sufficient condition for asymptotic stability of networked control system is derived in terms of linear matrix inequalities. The H∞ state feedback controller is obtained with an iteration algorithm. Differently from previous results, our derivation applies the idea of a second-order convex combination and the estimation of cross items. This method gives a reduced conservatism without using Jensen’s inequality. Numerical examples show the validity and feasibility of the proposed theoretical results.


2021 ◽  
Vol 13 (5) ◽  
pp. 2962
Author(s):  
Mayank Kumar Gautam ◽  
Avadh Pati ◽  
Sunil Kumar Mishra ◽  
Bhargav Appasani ◽  
Ersan Kabalci ◽  
...  

Networked control systems (NCSs) are attracting the attention of control system engineers. The NCS has created a paradigm shift in control system technology. An NCS consists of control loops joined through communication networks in which both the control signal and the feedback signal are exchanged between the system and the controller. However, its materialization faces several challenges as it requires the integration of advanced control and communication techniques. This paper presents an extensive review of NCSs from the perspective of control system design. The evolution of NCSs is broadly divided in three phases, namely NCSs prior to 2000, NCSs during 2001–2010, and NCSs from 2011 onwards. This division corresponds to the initial status, intermediate status, and the recent status of the developments in the design of NCSs. The advancement of different control techniques during these phases has been discussed comprehensively. This paper also describes the transition of control systems form continuous domain to networked domain, which makes it better than the traditional control systems. Some important practical applications, which have been implemented using NCSs, have also been discussed. The thrust areas for future research on NCS have also been identified.


2018 ◽  
Author(s):  
Asep Najmurrokhman

Makalah ini telah dipresentasikan dalam The 6th Electrical Power, Electronics, Communication, Control, And Informatics Seminar; Universitas Brawijaya, 30-31 Mei 2012. Networked control systems (NCS) adalah sistem kendali yang melibatkan jaringan komunikasi sebagai bagian dari lingkar kendali. Makalah ini menguraikan tentang perancangan dan implementasi prototipe NCS berupa pengendalian kecepatan motor DC melalui jaringan publik. Dalam penelitian ini, sebuah motor DC dirancang harus mampu mengikuti setpoint yang dikirim melalui jaringan komunikasi. Sebuah pengendali tipe integral yang ditempatkan terpisah dengan plantnya dirancang agar motor DC memiliki kemampuan setpoint tracking tersebut. Konfigurasi eksperimen terdiri atas motor DC buatan Quanser, Akuisisi data menggunakan produk National Instruments (NI) yaitu seri DAQ PCI-6221 dan SCB-68, serta perangkat lunak LabVIEW sebagai antarmuka perangkat keras dan jaringan komunikasi. Hasil pengujian menunjukkan kemampuan setpoint tracking diperoleh melalui pengaturan nilai penguatan integral dari pengendalinya.


Sign in / Sign up

Export Citation Format

Share Document