scholarly journals Research and proposal the configuration of the booster circuit in the grid connected solar cell system and MPPT simulation in the partially shaded conditions

2021 ◽  
Vol 62 (4) ◽  
pp. 79-90
Author(s):  
Minh Duc Nguyen ◽  
Anh Viet Truong ◽  
Phi Hoang Le ◽  
Lan Thuy Thi Vu ◽  
Y Nhu Do ◽  
...  

This paper proposes a new turbocharger configuration that uses fewer semiconductor locks, fewer reactor coils, and a higher turbidity factor than conventional turbocharger configurations. This allows for easier control, less component loss, high efficiency, reduced circuit size and weight, and low cost. A booster circuit configuration with recommended neutral is required and is suitable for T-shaped and NPC 3-order inverters. In addition, the article also applies the maximum power point tracking algorithm for PV systems working in partially shaded conditions to improve the working efficiency of PV systems, to meet the requirements of the PV systems. grid-connected large capacity PV system.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2521
Author(s):  
Alfredo Gil-Velasco ◽  
Carlos Aguilar-Castillo

There are multiples conditions that lead to partial shading conditions (PSC) in photovoltaic systems (PV). Under these conditions, the harvested energy decreases in the PV system. The maximum power point tracking (MPPT) controller aims to harvest the greatest amount of energy even under partial shading conditions. The simplest available MPPT algorithms fail on PSC, whereas the complex ones are effective but require high computational resources and experience in this type of systems. This paper presents a new MPPT algorithm that is simple but effective in tracking the global maximum power point even in PSC. The simulation and experimental results show excellent performance of the proposed algorithm. Additionally, a comparison with a previously proposed algorithm is presented. The comparison shows that the proposal in this paper is faster in tracking the maximum power point than complex algorithms.


2015 ◽  
Vol 787 ◽  
pp. 227-232 ◽  
Author(s):  
L.A. Arun Shravan ◽  
D. Ebenezer

In recent years there has been a growing attention towards use of solar energy. Advantages of photovoltaic (PV) systems employed for harnessing solar energy are reduction of greenhouse gas emission, low maintenance costs, fewer limitations with regard to site of installation and absence of mechanical noise arising from moving parts. However, PV systems suffer from relatively low conversion efficiency. Therefore, maximum power point tracking (MPPT) for the solar array is essential in a PV system. The nonlinear behaviour of PV systems as well as variations of the maximum power point with solar irradiance level and temperature complicates the tracking of the maximum power point. This paper reviews various MPPT methods based on three categories: offline, online and hybrid methods. Design of a PV system in a encoding environment has also been reviewed here. Furthermore, different MPPT methods are discussed in terms of the dynamic response of the PV system to variations in temperature and irradiance, attainable efficiency, and implementation considerations.


Author(s):  
Yan Xiao ◽  
Yaoyu Li ◽  
John E. Seem ◽  
Kaushik Rajashekara

This paper presents a Maximum Power Point Tracking (MPPT) strategy for multi-string photovoltaic (PV) systems using the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm. The multi-string PV system considered is a decentralized control configuration, controlling the voltage reference to each PV module but based on the feedback of the total power at the DC bus. This requires only one pair of voltage and current measurements. The MPPT control problem for such topology of multi-string PV systems features a high input dimension, which can dramatically slow down the searching process for the real-time optimization process involved. The SPSA algorithm is considered in this study due to its remarkable capability of fast convergence for high dimensional search problems endorsed by various applications recently. Simulation study is performed for an 8-string PV system, and experimental study is performed for a 4-string PV system. Good performances are observed for both simulation and experimental results.


2018 ◽  
Vol 7 (1) ◽  
pp. 66-85 ◽  
Author(s):  
Afef Badis ◽  
Mohamed Habib Boujmil ◽  
Mohamed Nejib Mansouri

This article concerns maximizing the energy reproduced from the photovoltaic (PV) system, ensured by using an efficient Maximum Power Point Tracking (MPPT) process. The process should be fast, rigorous and simple for implementation because the PV characteristics are extremely affected by fast changing conditions and Partial Shading (PS). PV systems are popularly known to have many peaks (one Global Peak (GP) and several local peaks). Therefore, the MPPT algorithm should be able to accurately detect the unique GP as the maximum power point (MPP), and avoid any other peak to mitigate the effect of (PS). Usually, with no shading, nearly all the conventional methods can easily reach the MPP with high efficiency. Nonetheless, they fail to extract the GP when PS occurs. To overcome this problem, Evolutionary Algorithms (AEs), namely the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are simulated and compared to the conventional methods (Perturb & Observe) under the same software.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 321 ◽  
Author(s):  
Dmitry Baimel ◽  
Saad Tapuchi ◽  
Yoash Levron ◽  
Juri Belikov

This paper proposes two new Maximum Power Point Tracking (MPPT) methods which improve the conventional Fractional Open Circuit Voltage (FOCV) method. The main novelty is a switched semi-pilot cell that is used for measuring the open-circuit voltage. In the first method this voltage is measured on the semi-pilot cell located at the edge of PV panel. During the measurement the semi-pilot cell is disconnected from the panel by a pair of transistors, and bypassed by a diode. In the second Semi-Pilot Panel method the open circuit voltage is measured on a pilot panel in a large PV system. The proposed methods are validated using simulations and experiments. It is shown that both methods can accurately estimate the maximum power point voltage, and hence improve the system efficiency.


2014 ◽  
Vol 651-653 ◽  
pp. 1019-1023
Author(s):  
You Huan Wang ◽  
Ning Liu ◽  
Dong Wei Xia

In order to address and meet the needs of people in these regions without electricity, we designed a small 500W off-grid PV-inverter. The main circuit includes battery charge and discharge circuit, and two-stage converter topology isolated. The digital processor TMS320F28023, high-performance and low-cost, is used to achieve maximum power point tracking (MPPT) of PV modules and charge control for battery. The experimental results of the prototype show that this design with high-precision and high-efficiency, meets the design requirements.


Author(s):  
I. A. Elzein ◽  
Yu. N. Petrenko

In this article an extended literature surveying review is launched on a set of comparative studies of maximum power point tracking (MPPT) techniques. Different MPPT methods are addressed with an ultimate aim of how to be maximizing the PV system output power by tracking Pmax in a set of different operational circumstances. In this paper maximum power point tracking, MPPT techniques are reviewed on basis of different parameters related to the design simplicity and/or complexity, implementation, hardware required, and other related aspects.he technology of solar systems has been booming for a while due to its ability to replace current fossil fuels like coal and gas for generation of electricity that produce air, water, and land pollution. In addition it decreased the issue of global warming and climate changes substantially due to being produced in a clean environmental manner and was proved to be an Eco-friendly resource of energy. The photovoltaic systems’ manufacturing process has been improving continuously over the last decade and photovoltaic systems have become an interesting solution. Precisely, PV systems are constituted from arrays of photovoltaic cells, choppers (mainly buck-boost or boost DC/DC converter), MPPT control systems and storage devices and/or grid connections. To improve the efficiency of such systems, various studies have been performed. The demand of PV generation systems seems to be increased for both standalone and grid-connected modes of PV systems. Therefore, an efficient maximum power point tracking (MPPT) technique is necessary to initialize the process of tracking the maximum power point MPP at all environmental conditions and then force the PV system to operate at that MPP point.


Author(s):  
Syafaruddin Syafaruddin

It is crucial to improve the photovoltaic (PV) system efficiency and to develop the reliability of PV generation control systems. One of the approaches to increase the efficiency of PV power generation system is to operate the PV systems optimally at the maximum power point. However, the PV system can be optimally operated only at a specific output voltage; otherwise the output power fluctuates under intermittent weather conditions. In addition, it is very difficult to test the performance of PV systems controller under the same weather condition during the development process where the field testing is costly and time consuming. For these reasons, the presentation is about the state of the art techniques to track the maximum available output power of photovoltaic systems called maximum power point tracking (MPPT) control systems. This topic could be also one of the most challenges in photovoltaic systems application that has been receiving much more attention worldwide. The talks will cover the application of intelligent techniques by means the artificial neural network (ANN) and fuzzy logic controller scheme using polar information to develop a novel real-time simulation technique for MPPT control by using dSPACE real-time interface system. In this case, the three-layer feed-forward ANN is trained once for different scenarios to determine the global MPP voltage and power and the fuzzy logic with polar information controller takes the global maximum power point (MPP) voltage as a reference voltage to generate the required control signal for the power converter. This type of fuzzy logic rules is implemented for the first time in MPPT control application. The proposed method has been tested using different solar cell technologies such as monocrystalline silicon, thin-film cadmium telluride and triple junction amorphous silicon solar cells. The verification of availability and stability of the proposed system through the real-time simulator shows that the proposed system can respond accurately for different scenarios and different solar cell technologies. In other cases, one of the main causes of reducing energy yield of photovoltaic systems is the partially shaded condition. Although the conventional MPPT control algorithms operate well in a uniform solar irradiance, they do not operate well in non-uniform solar irradiance conditions. The non-uniform conditions cause multiple local maximum power points on the power-voltage curve. The conventional MPPT methods cannot distinguish between the global and local peaks. Since the global power point may change within a large voltage window and also its position depends on shading patterns, it is very difficult to recognize the global operating point under partially shaded conditions. From these reasons, the presentation will address the effectiveness of the proposed MPPT method to solve the partially shaded conditions under the experimental real-time simulation technique based dSPACE real-time interface system for different size of PV arrays, such as 3x3(0.5kW) and 20x3(3.3kW) and different interconnected PV arrays, for instance series-parallel (SP), bridge link (BL) and total cross tied (TCT) configurations.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 816 ◽  
Author(s):  
Jae-Sub Ko ◽  
Jun-Ho Huh ◽  
Jong-Chan Kim

This paper presents an overview of the maximum power point tracking (MPPT) methods for photovoltaic (PV) systems used in the Micro Grids of PV systems. In the PV system, the output varies nonlinearly with temperature and radiation, and the point at which power is maximized appears accordingly. The MPPT of the PV system can improve output by about 25%, and it is very important to operate at this point at all times. Various methods of tracking the MPP of the PV system have been studied and proposed. In this paper, we discuss commonly used methods for the MPPT of PV systems, methods using artificial intelligence control, and mixed methods, and present the characteristics, advantages, and disadvantages of each method.


Author(s):  
S. A. Allahyari ◽  
Nasser Taheri ◽  
M. Zadehbagheri ◽  
Z. Rahimkhani

This paper presents a novel adaptive neural network (ANN) for maximum power point tracking (MPPT) in photovoltaic (PV) systems under variable working conditions. The ANN-based MPPT model includes two separate NNs for PV system identification and control. NNs are trained by using of a novel back propagation algorithm in pre/post control phases. Because of online optimal performance of NNs, the proposed method, not only overcome the common drawbacks of the conventional MPPT methods, but also gives a simple and a robust MPPT scheme. Simulation results, which carried on MATLAB, show that proposed controller is the most effective in comparison with conventional MPPT approaches.


Sign in / Sign up

Export Citation Format

Share Document