scholarly journals Simple and cheap photosystem for herbarium digitization

2021 ◽  
Vol 91-92 ◽  
pp. 50-53
Author(s):  
Andriy Novikov ◽  
Mariia Sup-Novikova

The digitization of the natural history collections is a crucial task of today. It allows not only sharing the data but also virtually preserving the specimens. This is especially important for small collections that suffer from limited financial support and can be easily lost. Here we share our experience of the building of cheap and simple photosystem that can be used for routine digitization of local herbaria with low or without incomes. This photosystem is modular and based on the regular components that can be easily purchased and/or updated. It is compact and can be conveniently assembled and disassembled, and transported. This photosystem consists of horizontal tripod Beike Q999H with two led lamps Yongnuo YN-300 Air mounted on the 11” Magic Arm handles. The camera Canon EOS 800D was chosen due to presence of fully rotated display, the high resolution, modern focusing system, RAW format support, and low price on the market. The lens Tokina AT-X M35 PRO DX AF 35 mm f/2.8 Macro was chosen due to extreme sharpness along the whole capturing field, low aberrations and optical distortion, high light sensitivity, and fast autofocus. We also tested light box as an option for herbarium specimens’ digitization. However, we found that light box is inconvenient for herbarium digitization dues several reasons, among which its massive sizes, limited access to working space, and necessity of application of huge mounting system that should hold the camera far higher over the center of light box. In general, work with light box significantly decelerated the digitization process. We did not find any advantaged in use of the light box and therefore it was rejected. We hope that our experience will be useful for other curators wanting to digitize their collections and having limited budget.

2002 ◽  
Vol 29 (3) ◽  
pp. 333-336
Author(s):  
PIOTR DASZKIEWICZ ◽  
MICHEL JEGU

ABSTRACT: This paper discusses some correspondence between Robert Schomburgk (1804–1865) and Adolphe Brongniart (1801–1876). Four letters survive, containing information about the history of Schomburgk's collection of fishes and plants from British Guiana, and his herbarium specimens from Dominican Republic and southeast Asia. A study of these letters has enabled us to confirm that Schomburgk supplied the collection of fishes from Guiana now in the Laboratoire d'Ichtyologie, Muséum National d'Histoire Naturelle, Paris. The letters of the German naturalist are an interesting source of information concerning the practice of sale and exchange of natural history collections in the nineteenth century in return for honours.


2005 ◽  
Vol 52 (5) ◽  
pp. 1823-1829 ◽  
Author(s):  
M. Balcerzyk ◽  
M. Moszynski ◽  
Z. Galazka ◽  
M. Kapusta ◽  
A. Syntfeld ◽  
...  

2018 ◽  
Vol 39 (12) ◽  
pp. 2231-2236 ◽  
Author(s):  
M. Trelles ◽  
A.K. Ahmed ◽  
C.H. Mitchell ◽  
I. Josue-Torres ◽  
D. Rigamonti ◽  
...  

Author(s):  
Viacheslav S. Stadnichuk ◽  
Valentin G. Kolobrodov ◽  
Oleksii O. Mosolab ◽  
Denis Yu. Kondratenko ◽  
Dmytro I. Ryabokon

Background. Analysis of statistical data showed that in most cases the cause of the accident is driver error and, as a consequence, violation of traffic rules. In this regard, over the past 10 years, active developments in the field of recognition of road signs and other obstacles in the path of a car have been actively developing. Car manufacturers offer ready-made built-in systems, mounted behind the interior rearview mirror and connected to the car’s on-board computer, which carries out further control of the car in a critical situation. The main disadvantage of these systems of this class is the low range of recognition of road signs, the dependence of optical parameters on temperature and low light sensitivity. Objective. The purpose of the paper is to model an athermal objective for a high-resolution camera, investigate the characteristics of lenses depending on the ambient temperature. Methods. Analysis and modeling of objectives, lenses, optical glass from different materials. Results. A high-resolution camera objective for all types of cars is proposed. An athermal objective was developed for a high-resolution camera. Conclusions. The optimized athermal design of the visible spectrum objective for long-range car cameras is considered. Car cameras typically have a fixed focus, and forward-facing cameras typically require relatively long focal lengths to provide information about distant objects. The optical system for these cameras should provide high resolution, as well as operate in a wide range of ambient temperatures. The camera design parameters are derived from the functional requirements of road sign recognition at a distance of 200 m. The objective design has five lenses with spherical surfaces. The objective has a relative aperture of f/2 and a modulation transfer function (MTF) of more than 0.5 at 111 l/mm over the entire temperature range.


Author(s):  
Roger Hyam

Many of the world’s natural history collections are creating high resolution digital images of their specimens. They often make these available on the web through some form or zoomable viewer. For historical reasons, a hotchpotch of technologies are used to achieve this. This diversity has lead to two issues. Firstly, maintenance becomes costly as technologies need replacing. Secondly there is little chance to share data between institutions or provide a unified user experience. A researcher visiting four different virtual collections may have four very different experiences. Similar issues exist in the archives and libraries disciplines. They also need to share high resolution, annotated images of the physical objects in their care. In response to this issue many have coalesced around the International Image Interoperability Framework (IIIF). IIIF is a set of shared application programming interface (API) specifications for interoperable functionality in digital image repositories. It separates the notion of a viewer, which may be used as part of a website or other application, and the web services that feed data to that viewer. By using a common API for serving data about images, different viewers can be used to view the same images, thus providing an upgrade path that does not require replacement of viewer and server software at the same time and allows different viewers to be used for the same image data. Potentially more importantly, it facilitates the construction of applications that view data from different collections as if they were in the same place. From the researcher’s point of view, the experience could be the same whether the virtual specimen is hosted locally or in a museum on another continent. There is one important thing that has been deliberately omitted from the IIIF standard. This has both enabled its rapid adoption but also makes it incomplete for building research applications. IIIF transmits no semantic data about the subject of the images, only labels. The IIIF data therefore needs to be bound to semantically rich data about the specimens being viewed, in some uniform way. Consortium of Taxonomic Facilities (CETAF ) specimen identifiers are now widely adopted by natural history collections in Europe. Each individual collection object is designated by a URI chosen and maintained by the institution owning the specimen (Groom et al. 2017, Güntsch et al. 2018, Güntsch et al. 2017, HYAM et al. 2012). Under Linked Data conventions, content negotiation is used at the server so that users accessing an object using a web-browser are redirected to a human-readable representation of the object, typically a web-page, whilst software systems requiring machine-processable representations are redirected to an RDF-encoded metadata record. CETAF specimen identifiers are therefore ideal partners for IIIF representations of specimens. But how should we join the two together in a semantically rich way that will be generally understandable? SYNTHESYS+ is a European Commission funded programme that facilitates collaboration and network building among European natural history collections. It is concerned with both physical and virtual access to the 390 million specimens of plants and animals housed in participating institutions. Under Task 4.3 of this project, we have been working to create a reliable way to link between the RDF metadata about specimens and images of those specimens in IIIF as well as from images of specimens back to metadata of those specimens. By January 2021, we aim to have ten exemplar institutions publishing IIIF manifest files linked to CETAF identifiers for a few million specimens and for this to act as a catalyst for wider adoption in the natural history community. This presentation gives an update on the rollout of these implementations, paying particular attention to the challenges of semantically annotating specimens with images.


Bothalia ◽  
2010 ◽  
Vol 40 (1) ◽  
pp. 37-46
Author(s):  
J. C. Manning ◽  
P. Goldblatt

A review of the genera Othonna and Senecio undertaken for the forthcoming Greater Cape plants 2: Namaqualand-southern Namib and western Karoo (Manning in prep.) led to a re-examination of the taxonomic status of several species. This was facilitated by the recent availability of high-resolution digital images on the Aluka website (www.aluka.org) of the Drege isotypes in the Paris Herbarium that formed the basis of many species described by De Candolle in his Prodromus systematis naturalis regni vegetabilis. These images made it possible to identify several names whose application had remained uncertain until now. Each case is briefly discussed, with citation of additional relevant herbarium specimens. The following species are reduced to synonomy: O. incisa Harv. is included in O. rosea Harv.; O. spektakelensis Compton and O. zeyheri Sond. ex Harv. are included in O. retrorsa DC.; S. maydae Merxm. is included in S. albopunctatus Bolus, which is now considered to include forms with radiate and discoid capitula; S. cakilefolius DC. is included in  O. arenarius Thunb.; S. pearsonii Hutch, is included in O. aspertdus DC.; S. parvifolius DC. is included in S. carroensis DC.; S. eriobasis DC. is included in S. erosus L.f.; and S. lobelioides DC. is included in S. flavus (Decne.) Sch.Bip. The name S. panduratus (Thunb.) Less, is identified as a synonym of S. erosus L.f. and plants that are currently know n under this name should be called S. robertiifolius DC. The confusion in the application o f the names O. perfoliata (L.f.) Jacq. and O. filicaulis Jacq. is examined. O. perfoliata is lecto- typified against a specimen in the Linnaean Herbarium (LINN)  w ith radiate capitula. The name O. filicaulis correctly applies to a radiate species and is treated as a synonym of O. perfoliata. The vegetatively similar taxon with disciform capitula that is currently known as O. filicaulis should be known as ()  undulosa (DC.) J.C.Manning  Goldblatt, comb. nov. The new name O. daucifolia J.C.Manning Goldblatt is provided to replace the later homonym O. abrotanifolia (Harv.) Druce.


Sign in / Sign up

Export Citation Format

Share Document