scholarly journals CH4 Emission Flux Model in Rice Growing Season in Cold Region Under Water Saving Irrigation Mode

2020 ◽  
Vol 19 (02) ◽  
pp. 469-479
Author(s):  
Lihong Yu ◽  
Mengxue Wang
2021 ◽  
Vol 937 (2) ◽  
pp. 022035
Author(s):  
Hang Cui

Abstract Climate change has an important impact on greenhouse gas emissions from wetland ecosystems. The static box-meteorological chromatography method was used to determine the CO2 and CH4 emission fluxes of hummocky and hollow in the peat bogs in the Arak Lake Basin during the growing season in 2021. The results showed that the peaks of the CO2 and CH4 emission fluxes in the growing seasons of the hummocky and hollow appeared in July, and their value in May is the lowest. The average C02 emission flux (376.39±56.14 mg-m-2-h-1) during the growing season of hummocky is higher than that of hollow (167.36 mg-m-2-h-1), while the average emission flux of CH4 during the growing season of hummocky (2.00±0.31 mg-m-2-h-1) is lower than that of hollow (3.04 mg-m-2-h-1). The climatic fluctuations have caused differences in the CO2 and CH4 emission fluxes of the same micro-topography in the study area during the growing season between 2020 and 2021.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 896
Author(s):  
Qing Ye ◽  
Xiaoguang Yang ◽  
Wenjuan Xie ◽  
Junmeng Yao ◽  
Zhe Cai

During the rice growing season, farmers’ decisions about cropping systems and seed varieties directly affect the utilization of heat resource, and eventually affect the potential yield. In this study, we used the hourly accumulated temperature model to calculate the available heat resource as well as the effective heat resource in southern China. We conducted a spatiotemporal analysis of the heat resource effectiveness during rice growing season and an impact assessment of heat resource effectiveness on rice potential yield and cereal yield reduction. The results showed that, during the period of 1951–2015, heat resource effectiveness generally declined in the rice cropping area of southern China. And this decrease worsened during the most recent three decades compared with the period of 1951–1980. A strong correlation was detected between heat resource effectiveness and rice potential yield in the study area. When the effective heat resource during the growing season increased by 1 °C·d, rice potential yield would increase by 14 kg ha−1. For each percentage increase in heat resource effectiveness, the rice potential yield reduction rate would go down by 0.65%. This agro-climatological study aims to offer a scientific basis for rice production decisions in southern China, such as when to plant, which varieties to choose and so on.


2018 ◽  
Vol 24 (1) ◽  
pp. 1
Author(s):  
Lilik Slamet Supriatin

ABSTRAKEmisi metana (CH4) dari pertanian padi lahan sawah dapat dipengaruhi oleh faktor-faktor seperti cara pemberian air, pengolahan tanah, varietas padi, dan iklim. Pada penelitian ini dikaji tahap penentuan musim tanam, pemilihan varietas padi, dan tahap terakhir adalah teknik budidaya pertanian padi lahan sawah yang terkait mitigasi emisi CH4. Hasil kajian menunjukkan bahwa musim tanam padi pada musim kemarau menghasilkan emisi CH4 lebih kecil daripada di musim hujan dengan pengurangan emisi CH4 sebesar 18,13%. Indonesia yang memiliki tiga tipe pola curah hujan tahunan (monsunal, equatorial, lokal) mengakibatkan periode musim tanam rendah emisi CH4 berbeda antara tipe curah hujan yang satu dengan lainnya. Varietas padi Way apo buru adalah varietas yang menghasilkan emisi CH4 terendah tetapi tetap optimum dalam produksi gabah sehingga dapat dipilih menjadi prioritas pertama untuk ditanam. Teknik budidaya pertanian padi lahan sawah yang menghasilkan rendah emisi CH4 dapat dilakukan dengan membuat genangan air yang dangkal saja, dengan cara pemberian air berselang, dan kombinasi antara pemeliharaan padi, ganggang, tanaman paku air, ikan air tawar, dan bakteri metanotrof dalam satu petak lahan sawah (mina padi plus). Pemberian air dengan cara berselang menurunkan emisi CH4 pada musim kemarau sebesar 59,36% dan pada musim hujan sebesar 51,68% jika dibandingkan dengan pemberian air secara terus-menerus (kontinyu). Teknik budidaya mina padi plus mengurangi emisi CH4 sebesar 21,5 kg/ha/musim tanam dan bakteri metanotrof mengurangi emisi CH4 ke atmosfer sebesar 20-60 Tg. Sawah dapat dijadikan sebagai instalasi terbuka pengolahan udara berlimbah CH4. ABSTRACTMethane (CH4) emissions from rice cultivation can be influenced by several factors i.e. the provision of water, soil cultivation, varieties of rice, and the climate. This study will examine the determination of the growing season, the selection of rice varieties and cultivation techniques of rice agriculture-related wetland mitigation of the CH4 emission. The results showed that the rice planting season in the dry season produces CH4 emissions is smaller than in the rainy season with CH4 emission reduction of 18.13%. Indonesia, which has three types of annual rainfall patterns resulting in periods of low growing season CH4 emissions differ between types of rainfall each other. Way apo buru rice species are varieties that produce low emissions of CH4 but remains optimum in grain production. Cultivation techniques of rice farming rice fields that produce low emissions of CH4 can be done by creating a pool of shallow water only, by way of provision of water intermittent, and the combination of maintenance of rice, algae, plants salviniales, freshwater fish, and bacteria metanotrof in a wetland. The provision of water by intermittent lowering emissions of CH4 in the dry season by 59.36% and in the rainy season amounted to 51.68% when compared to the provision of water continuously (continuous). Mina padi plus cultivation techniques reduce CH4 emissions by 21.5 kg/ha/planting and metanotrof bacteria can reduce CH4 emissions to the atmosphere by 20-60 Tg. 


2016 ◽  
Vol 49 (2) ◽  
pp. 218-225 ◽  
Author(s):  
Yongseon Zhang ◽  
Kangho Jung ◽  
Hye-Rae Cho ◽  
Kyeong-Hwa Han ◽  
Min-Kyeong Kim ◽  
...  

2009 ◽  
Vol 15 (1) ◽  
pp. 229-242 ◽  
Author(s):  
JIANWEN ZOU ◽  
YAO HUANG ◽  
YANMEI QIN ◽  
SHUWEI LIU ◽  
QIRONG SHEN ◽  
...  

Elem Sci Anth ◽  
2015 ◽  
Vol 3 ◽  
Author(s):  
M. O. L. Cambaliza ◽  
P. B. Shepson ◽  
J. Bogner ◽  
D. R. Caulton ◽  
B. Stirm ◽  
...  

Abstract We report the CH4 emission flux from the city of Indianapolis, IN, the site of the Indianapolis Flux Experiment (INFLUX) project for developing, assessing, and improving top-down and bottom-up approaches for quantifying urban greenhouse gas emissions. Using an aircraft-based mass balance approach, we find that the average CH4 emission rate from five flight experiments in 2011 is 135 ± 58 (1σ) moles s-1 (7800 ± 3300 kg hr-1). The effective per capita CH4 emission rate for Indianapolis is 77 kg CH4 person-1 yr-1, a figure that is less than the national anthropogenic CH4 emission (∼91 kg CH4 person-1 yr-1) but considerably larger than the global figure (∼48 kg CH4 person-1 yr-1). We consistently observed elevated CH4 concentrations at specific coordinates along our flight transects downwind of the city. Inflight investigations as well as back trajectories using measured wind directions showed that the elevated concentrations originated from the southwest side of the city where a landfill and a natural gas transmission regulating station (TRS) are located. Street level mobile measurements downwind of the landfill and the TRS supported the results of aircraft-based data, and were used to quantify the relative contributions from the two sources. We find that the CH4 emission from the TRS was negligible relative to the landfill, which was responsible for 33 ± 10% of the citywide emission flux. A regression of propane versus methane from aircraft flask samples suggests that the remaining citywide CH4 emissions (∼67%) derive from the natural gas distribution system. We discuss the combination of surface mobile observations and aircraft city-wide flux measurements to determine the total flux and apportionment to important sources.


Sign in / Sign up

Export Citation Format

Share Document