scholarly journals Analysis of Supervised Machine Learning Techniques for Diagnosis of Disease of Infant Baby

A system for monitoring an infant's health is developed and described in this paper. In this system, smoke detector, sound sensor, temperature and humidity sensor, are interfaced with the controller Node MCU-ESP8266. In the system, ThingSpeak Cloud is used for the data processing. ThingSpeak Cloud is connected to the Wi-Fi based microcontroller. The behavior and the problems that are being detected can be easily notified to the parents apart from the doctors and nurses, So, that even the nurses or the doctors misses out by chance, the parents can handle the scenario. The collected data can be taken out as in the form of the csv format. This data can be easily put into the Machine Learning Model in order to predict the various problems that a baby might be suffering from. These predictions have been done solely upon the data collected from the individual baby. Furthermore, separate system-based report would be facilitated by the model itself

2020 ◽  
Vol 9 (1) ◽  
pp. 1000-1004

The automatic extraction of bibliographic data remains a difficult task to the present day, when it's realized that the scientific publications are not in a standard format and every publications has its own template. There are many “regular expression” techniques and “supervised machine learning” techniques for extracting the entire details of the references mentioned within the bibliographic section. But there's no much difference within the percentage of their success. Our idea is to seek out whether unsupervised machine learning techniques can help us in increasing the share of success. This paper presents a technique for segregating and automatically extracting the individual components of references like Authors, Title of the references, publications details, etc., using “Unsupervised technique”, “Named-Entity recognition”(NER) technique and link these references to their corresponding full text article with the assistance of google


2020 ◽  
Vol 28 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Gabriela Bitencourt-Ferreira ◽  
Amauri Duarte da Silva ◽  
Walter Filgueira de Azevedo

Background: The elucidation of the structure of cyclin-dependent kinase 2 (CDK2) made it possible to develop targeted scoring functions for virtual screening aimed to identify new inhibitors for this enzyme. CDK2 is a protein target for the development of drugs intended to modulate cellcycle progression and control. Such drugs have potential anticancer activities. Objective: Our goal here is to review recent applications of machine learning methods to predict ligand- binding affinity for protein targets. To assess the predictive performance of classical scoring functions and targeted scoring functions, we focused our analysis on CDK2 structures. Methods: We have experimental structural data for hundreds of binary complexes of CDK2 with different ligands, many of them with inhibition constant information. We investigate here computational methods to calculate the binding affinity of CDK2 through classical scoring functions and machine- learning models. Results: Analysis of the predictive performance of classical scoring functions available in docking programs such as Molegro Virtual Docker, AutoDock4, and Autodock Vina indicated that these methods failed to predict binding affinity with significant correlation with experimental data. Targeted scoring functions developed through supervised machine learning techniques showed a significant correlation with experimental data. Conclusion: Here, we described the application of supervised machine learning techniques to generate a scoring function to predict binding affinity. Machine learning models showed superior predictive performance when compared with classical scoring functions. Analysis of the computational models obtained through machine learning could capture essential structural features responsible for binding affinity against CDK2.


Author(s):  
Augusto Cerqua ◽  
Roberta Di Stefano ◽  
Marco Letta ◽  
Sara Miccoli

AbstractEstimates of the real death toll of the COVID-19 pandemic have proven to be problematic in many countries, Italy being no exception. Mortality estimates at the local level are even more uncertain as they require stringent conditions, such as granularity and accuracy of the data at hand, which are rarely met. The “official” approach adopted by public institutions to estimate the “excess mortality” during the pandemic draws on a comparison between observed all-cause mortality data for 2020 and averages of mortality figures in the past years for the same period. In this paper, we apply the recently developed machine learning control method to build a more realistic counterfactual scenario of mortality in the absence of COVID-19. We demonstrate that supervised machine learning techniques outperform the official method by substantially improving the prediction accuracy of the local mortality in “ordinary” years, especially in small- and medium-sized municipalities. We then apply the best-performing algorithms to derive estimates of local excess mortality for the period between February and September 2020. Such estimates allow us to provide insights about the demographic evolution of the first wave of the pandemic throughout the country. To help improve diagnostic and monitoring efforts, our dataset is freely available to the research community.


Author(s):  
Linwei Hu ◽  
Jie Chen ◽  
Joel Vaughan ◽  
Soroush Aramideh ◽  
Hanyu Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document